• Title/Summary/Keyword: Residual solid

Search Result 240, Processing Time 0.024 seconds

Fabrication of Piezoelectric PZT Thick Film by Sol-gel Process (Sol-Gel 법에 의한 압전 PZT 후막의 제조)

  • Park, Jong-whan;Bang, Kook-soo;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.94-99
    • /
    • 2015
  • Lead zirconate titanate (PZT) thick films with thicknesses of ㎛ were fabricated on silicon substrates using an aerosol deposition method. A PZT powder solution was prepared using a sol-gel process. The average diameters (d50) obtained were 1.67, 1.98, and 2.40μm when the pyrolysis temperatures were 300℃, 350℃, and 450℃ respectively. The as-deposited film had a uniform microstructure without any cracks or pores. The as-deposited films on silicon were annealed at a temperature of 700℃. The 20-㎛-thick PZT film showed good adherence between the PZT film and substrate, with no tearing observed in the conventional solid phase process. This was probably because the presence of pores produced from organic residue during annealing relieved the residual stresses in the deposited film.

Punching Fracture Experiments and Simulations of Unstiffened and Stiffened Panels for Ships and Offshore Structures

  • Park, Sung-Ju;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.155-166
    • /
    • 2020
  • Ductile fracture prediction is critical for the reasonable damage extent assessment of ships and offshore structures subjected to accidental loads, such as ship collisions and groundings. A fracture model combining the Hosford-Coulomb ductile fracture model with the domain of solid-to-shell equivalence model (HC-SDDE), was used in fracture simulations based on shell elements for the punching fracture experiments of unstiffened and stiffened panels. The flow stress and ductile fracture characteristics of JIS G3131 SPHC steel were identified through tension tests for flat bar, notched tension bar, central hole tension bar, plane strain tension bar, and pure shear bar specimens. Punching fracture tests for unstiffened and stiffened panels are conducted to validate the presented HC-DSSE model. The calibrated fracture model is implemented in a user-defined material subroutine. The force-indentation curves and final damage extents obtained from the simulations are compared with experimental results. The HC-DSSE fracture model provides reasonable estimations in terms of force-indentation paths and residual damage extents.

Evaluation for Thin Films Characteristics of Nitride Titanium-Chromium using Arc Ion Plating (아크이온플레이팅에 의한 질화 티탄-크롬의 박막특성 평가)

  • Fujita, Kazuhisa;Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.96-101
    • /
    • 2011
  • The thin films of TiN have been used extensively as wear-resistant materials, for instance, such as tools of high-speed cutting, metal mold forming etc. In these days, because the thin films capable of being used more severe conditions are needed, the technologies of arc ion plating are tried to improve its characteristics. The purpose of this study is to investigate the characteristics of thin films of (Ti,Cr)N compared with those of TiN. The method of arc ion plating, which is known as showing good tight-adherence and productivity, was used. After manufacturing thin films of ($Ti_{1-x}Cr_{x}$)N (x=0~1) with change of Cr in (Ti,Cr) target, atomic concentration, structure, size of crystallite, residual stress and surface roughness of thin films on substrate were investigated. As the results, it was confirmed that Cr atomic concentrations of thin films were proportionally changed with Cr atomic concentrations of target, and thin films of ($Ti_{1-x}Cr_{x}$)N (x=0~1) showed NaCl type and CrN existed as solid solution to TiN.

Application of Fuller's ideal curve and error function to making high performance concrete using rice husk ash

  • Hwang, Chao-Lung;Bui, Le Anh-Tuan;Chen, Chun-Tsun
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.631-647
    • /
    • 2012
  • This paper focuses on the application of Fuller's ideal gradation curve to theoretically design blended ratio of all solid materials of high performance concrete (HPC), with the aid of error function, and then to study the effect of rice husk ash (RHA) on the performance of HPC. The residual RHA, generated when burning rice husk pellets at temperatures varying from 600 to $800^{\circ}C$, was collected at steam boilers in Vietnam. The properties of fresh and hardened concrete are reviewed. It is possible to obtain the RHA concrete with comparable or better properties than those of the specimen without RHA with lower cement consumption. High flowing concrete designed by the proposed method was obtained without bleeding or segregation. The application of the proposed method for HPC can save over 50% of the consumption of cement and limit the use of water. Its strength efficiency of cement in HPC is 1.4-1.9 times higher than that of the traditional method. Local standards of durability were satisfied at the age of 91 days both by concrete resistivity and ultrasonic pulse velocity.

A study on simultaneous determination of residual sulfonamides in livestock productions by high performance liquid chromatography (HPLC를 이용한 축산식품중 잔류 설폰아미드제의 동시분석법 연구)

  • 황래홍;김영수;윤은선;김기근;이규학
    • Korean Journal of Veterinary Service
    • /
    • v.18 no.3
    • /
    • pp.13-28
    • /
    • 1995
  • This study was carried out to explore the most sensitive and useful method for simultaneous determination of five sulfa drugs(sulfamethazine, sulfamerazine, sulfamonomethoxine, sulfadimethoxine, sulfaquinoxaline) in livestock productions(pork muscle, bovine muscle, chicken muscle, milk ) by HPLC with UV detector and reverse phase column. The results obtained were as follows:1. For mobile phase acetonitrile-0.01M ammonium acetate (23:77) showed more applicable sensitivity and retention times than acetonitrile-1% acetic acid(23:77). Thus acetonitrile-0.01M ammonium acetate(23:77) selected and applied to the modification test, from which it was found pH 6.75 was the most adequate. 2. Optimal wavelength of UV for SMT(sulfamethazine), SMR(sulfamerazine), SMM(sulfamonomethoxine), SD(sulfadimethoxine), and SQ(sulfaquinoxaline) were 266, 266, 265, 269 and 250nm, respectively, and that for simultaneous application it was 263nm. 3. The average recovery rate by extractant(chloroform, dichloromethane, chlorform+dich-loromethane) in the classic method was not significantly different(p>0.05) but that by chloroform higher than the others. Thus chloroform was found to be adequate as extractant in this classic method. 4. The average recovery rate was 86.5% by the MSPD(matrix solid phase disperse) method, which was significantly higher than that by the classic method(p<0.05). Also the recovery rates by method were significantly different(p<0.05) in accordance with sample and type of drug. The MSPD method was much superior to classic method on clean-up.

  • PDF

Improvement of Tracking Servo Performance in SIL based Near-field Recording using Disturbance Observer (외란 관측기를 이용한 근접장 기록 시스템의 트랙킹 서보 성능 향상)

  • Kang, Min-Seok;Kim, Joong-Gon;Shin, Won-Ho;Jeong, Jun;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.609-612
    • /
    • 2008
  • The solid immersion lens (SIL) based near-field recording (NFR) system is considered as one of the high density optical data storage system. For the NFR servo system, tracking servo control is a difficult technology to maintain extremely small gap between SIL and media within one twentieth. This is because the track pitch is decreased for increasing the recording density. In this paper, we propose disturbance observer (DOB) and internal model principle (IMP) for disturbance rejection due to eccentricity of disk. The performance of tracking controller using DOB is increased by about 85%, 94%, 97% using Q filters that have bandwidths of 50Hz, 125Hz, 250Hz, respectively. Moreover, IMP based controller is effectively reduced the residual error.

  • PDF

Characteristics of Wire EDM for Cold Die Steel due to the Different Wire Electrode Component (전극선 성분 변화에 따른 냉간금형용강의 와이어방전가공 특성)

  • Wang, Duck-Hyun;Jeong, Sun-Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.98-105
    • /
    • 2003
  • In the experimental study, wire EDM was conducted for cold die steel by changing the Wire electrode, peak discharge current and number of finish cut. From the micro structure analysis of SEM photographs, the size of irregular welded and added component on the EDMed surface is decreasing and size of EDMed plane surface is increasing as the decreasing peak current and increasing number of finish cut. From the analysis of coating effect, Zn component is highly contained in Br and Zn Wire EDMed surface and copper component is highly contained in Br and Al wire EDMed surface. Hardness values are Increasing as the increasing peak current and decreasing the number of finish cut The value of hardness is decreasing as Cu, Al, Zn and Br wire electrode because of the residual austenite effect of solid solution copper on solidification, and finally EDMed surface has the highest hardness values for every wire electrode. Yield strength values becomes larger and bending strength values become smaller due to the increasing the hardness. These results are increased as increasing brittleness with hardness.

  • PDF

Deformation of a mold for large area UV-nanoimprint lithography in alignment and curing processes (UV 나노임프린트리소그래피의 정렬 공정 중 몰드의 변형해석)

  • Park, In-Soo;Won, Chong-Jin;Yim, Hong-Jae;Jeong, Jay-I.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1939-1943
    • /
    • 2008
  • Deformation of a mold is measured and analyzed in alignment and curing processes of UV-Imprint Lithography. We are focused on mold deformation caused by a UV resin, which is laminated between a mold and a target glass-panel. The UV resin is viscous in case of liquid state, and the resin will be solidified when being exposed by the ultra-violet light. The viscosity of the resin causes shear force on the mold during the alignment process. Moreover, the shrinkage during phase change from liquid to solid may cause residual stress on the mold. The experiments for measuring temperature and strain are made during alignment and curing process. Strain-gages and thermocouples are used for measuring the strain and variation of temperature on several points of the mold, respectively. The deformation of mold is also simulated and analyzed. The simulation results are compared with the experiments. Finally, sources of alignment errors in large area UV-nanoimprint lithography are discussed.

  • PDF

The Application of 3D Injection Molding Simulation in Gate Location Selection for Automotive Console (자동차용 콘솔 게이트 위치 선정을 위한 3차원 사출성형 시뮬레이션 활용)

  • Choi, Young-Geun
    • Journal of Power System Engineering
    • /
    • v.18 no.3
    • /
    • pp.51-58
    • /
    • 2014
  • Injection molding simulation provided optimized design results by analyzing quality problems while the product is in assembly or in the process of manufacturing with make automobile plastics. Frequent change of design, change of injection molding, repetition of test injection which was held in the old way can now be stopped. And quality upgrade is expected instead. This report deals with the effect which the position of injection molding automobile console gate and number has on product quality including pressure at end of fill, bulk temperature at end of fill, shear stress of end of fill, residual stress at post filling end, product weld lines and warpage results. Simpoe-Mold simulates the complete manufacturing process of plastic injected parts, from filling to warpage. Simpoe-Mold users, whether they are product designers, mold makers or part manufacturers, can identify early into the design stage potential manufacturing problems, study alternative solutions and directly assess the impact of such part modification, whatever the complexity and geometry of such parts, shell part as plain solid parts.

Development of Rotor Shaft Manufacturing Process using a Large Friction Welding (대형마찰용접을 이용한 로타샤프트 제조공정개발)

  • Jeong, H.S.;Lee, N.K.;Park, H.C.;Choi, S.K.;Cho, J.R.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.266-270
    • /
    • 2007
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint face, and energy required for welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy, amount of upset, working time, and residual stresses in the joint. Inertia welding was conducted to make the large rotor shaft for low speed marine diesel engine, alloy steel for shaft of 140mm. Due to material characteristics, such as, thermal conductivity and high temperature flow stress, on the two sides of the weld interface, modeling is crucial in determining the optimal weld parameters. FE simulation is performed by the commercial code DEFORM-2D. A good agreement between the predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters.