• Title/Summary/Keyword: Residual solid

Search Result 240, Processing Time 0.023 seconds

Effect of Inner Shot Peening Process for Tubular Stabilizer Bars (차량용 중공 스테빌라이저바의 내측 쇼트피닝 효과)

  • Seo, Yu Won;Sur, Jin Won;Lee, Won Ki;Kim, Jin Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1119-1124
    • /
    • 2017
  • The stabilizer bar mounted on the vehicle underbody makes for a more comfortable ride by holding the vehicle itself when the vehicle is cornering. Stabilizer bars are available in two types: solid and tube. To lighten the weight of the vehicle, and owing to weight reduction requirements, tubular stabilizer bars are increasingly being used. Tubular stabilizer bars can be fabricated to be over 34% lighter than solid bars, but the lifetime of the product tends to decrease rapidly as the weight ratio increases. However, the durability can be improved by utilizing high-strength and high-hardness materials for the stabilizer bar or by improving the shot peening method.

Pilot Scale Anaerobic Digestion of Korean Food Waste (파일로트 규모 음식쓰레기 2상 혐기소화 처리공정에 관한 연구)

  • Lee, J.P.;Lee, J.S.;Park, S.C.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.197-203
    • /
    • 1998
  • A 5 ton/day pilot scale two-phase anaerobic digester was constructed and tasted to treat Korean food wastes in Anyang city. The process was developed based on 3 years of lab-scale experimental results on am optimim treatment method for the recovery of biogas and humus. Problems related to food waste are ever Increasing quantity among municipal solid wastes(MSW) and high moisture and salt contents. Thus our food waste produces large amounts of leachate and bed odor in landfill sites which are being exhausted. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert material such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 days space time at pH of about 6.5. The second, methanization reactor part of which is filled with anaerobic fillters, converted the acids into methane with pH between 7.4 to 7.8. The space time for the second reactor was 15 days. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady state operation with the maximum organic rate of 7.9 $kgVS/m^3day$ and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about $230m^3$ of biogas with 70% of methane and 80kg humus. This process is extended to full scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.

  • PDF

In-situ spectroscopic studies of SOFC cathode materials

  • Ju, Jong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF

Characteristics of precipitation treatment for Ca and Mg pretreatment of brine generated from MD/RO desalination plant (MD/RO 담수화 플랜트에서 발생한 농축수의 Ca 및 Mg 전처리를 위한 침전 처리 특성)

  • Shim, Jae-Ho;Park, Jae-Chul;Lim, Dae-Hwan;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.4
    • /
    • pp.329-338
    • /
    • 2017
  • The problem of disposal of brine due to increased MD/RO desalination plant has recently become a big social issue. The chlor-alkali process through electrolysis of brine has been studied as a method to overcome this problem. In order to increase the electrolysis efficiency, a pretreatment process for removal of hard substances must be preceded. In this study, we investigated the mechanism of removal of hardness through chemical precipitation. As a result, Ca was greatly influenced by addition of $Na_2CO_3$, and Mg was strongly influenced by pH. Also, the addition of NaOH and $Na_2CO_3$ enabled simultaneous removal of Ca and Mg, and showed a removal efficiency of 99.9% or more. Finally, the residual concentrations of Ca and Mg in the brine after the reaction were 0.14 and 0.13 mg/L, respectively. Saturation index was calculated using Visual MINTEQ 3.1, and solid phase analysis of the precipitate was performed by FE-SEM and PXRD analysis. It was confirmed that precipitate formed by the formation of calcite and brucite.

Degradation of the Selected Pesticides by Gas Discharge Plasma (기체플라즈마에 의한 농약분해특성 연구)

  • Min, Zaw Win;Hong, Su-Myeong;Mok, Chul-Kyoon;Im, Geon-Jae
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • As increasing the use of pesticides both in number and amount to boost crop production, consumer concerns over food quality and safety with respect to residual pesticides are also continuously increasing. However, there is still lacking of information that can effectively help to remove residual pesticides in foods. In recent years, contaminant removal by gas (or) glow discharge plasma (GDP) attracts great interests on environmental scientists because of its high removal efficiency and environmental compatibility. It was shown to be effective for the removal of some organophosphorus pesticides, phenols, benzoic acid, dyes, and nitrobenzene on solid substrate or in aqueous solution. This work mainly focuses on the removal of wide range of residual pesticides from fresh fruits and vegetables. As for preliminary study, the experiments were carried out to investigate whether GDP can be used as an effective tool for degrading target pesticides or not. With this objective, 60 selected pesticides drop wised onto glass slides were exposed to two types of GDP, dielectric barrier discharge plasma (DBDP) and low pressure discharge plasma (LPDP), for 5 min. Then, they were washed with 2 mL MeCN which were collected and used for determination of remaining concentration of pesticides using LC-MS/MS. Among selected pesticides, degradation of 18 pesticides (endosulfan-total was counted as one pesticide) by GDP could not be examined because control treatments, which were left in ambient environment, of those pesticides recovered less than 70% or even did not recover. However, majority of tested pesticides (42) were degraded by both types of GDP with satisfactory recovery (>80%) of control sample. Pesticides degradation ranged from 66.88% to 100% were achieved by both types of plasma except clothianidin which degradation in LPDP was 26.9%. The results clearly indicate that both types of gas discharge plasma are promising tools for degrading wide range of pesticides on glass substrate.

A Study on the Compressive Capacity of Yellow Poplar Skin-timber (백합나무 스킨팀버의 압축 성능에 관한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.333-343
    • /
    • 2011
  • The yellow poplar is an appropriate species for the age of low carbon green growth, because its absorption rates of ozone is greatly excellent, and also the absorption rates of carbon dioxide causing climate changes is very remarkable. The yellow poplar, which is a kind of rapid growth tree, shows a lack of performance as a structural member, however, it is suitable to use a variety of purposes like furniture materials, interior materials, plywood materials, and so on. In this study, the structural size skin-timbers were made by using the yellow poplar, and the compressive capacity was evaluated, also the numerical model was developed for the various uses. The rectangular shape skin-timber presented a good performance by showing 56.3% residual strength about the solid material. In case of the cylinder shape skin-timber showed a possibility to use diversely as a furniture material, as well as a structural uses, because almost 50% compressive capacity of material even though its residual area rates was 25%. Both rectangular shape and the cylinder shape represented that 'Brooming or end rolling' were the major failure mode, and partly splitting failure mode. The compressive capacity of the rectangular shape which residual area rates was large was higher than the cylinder shape, but it did not show statistical significance about the compressive capacity between them. Thus, it will be possible to use them mixed for a convenience of users. The result of the numerical analysis model was quite similar to actual test of the compressive capacity. Therefore, the yellow poplar can be utilized in the development of various uses by applying numerical analysis model about a variety of shapes and dimensions.

Potential Contamination of Soil and Groundwater from the Residual Mine Tailings in the Restored Abandoned Mine Area : Shihung Mine Area (페광산 복구지역 잔류장미로 인한 주변 지하수${\cdot}$토양 오염가능성-시흥광산 사례)

  • 정예진;이상훈
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.461-470
    • /
    • 2001
  • The Shihung mine was restored in the early 90's after abandonment for 20 yews since 1973. Although disposed mine tailings were removed and the site was replaced by an incineration plant, still some residual mine tailings remain in the places including the old mine tailing ditposal area and the adjacent agricultural area. These residual mine tailings are prone to impose an adverse impact on the soil and groundwater and needs investigation for the potential contamination. Mine tailing samples were collected from the old tailing disposal area and the iii paddy. The porewater from the mine tailing were extracted and analysed to investigate chemical changes along the reaction path. Batch leaching tests were also carried out in the laboratory to find any supporting evidence found in the field analysis. Evidence of elemental leaching was confirmed both by the mine tailing and the porewater chemistry in them. The element concentrations of Cu, Cd, Pb, Zn in the porewater exceed the standard for drinking water of Korean government and US EPA. Leaching of heavy metals from the mine tailing seem to be responsible for the contamination. In batch leaching test. heavy metals were either continuous1y released or declined rapidly. Combining the information with porewater variation with depths and the geochemical meodeling results, most of elements are controlled by dissolution and/or precipitation processes, with some solubility controlling solid phases (Cu, Pb, Fe and Zn). Batch leaching test conducted at fixed pH 4 showed much higher releases for the heavy metals up to 400 times (Zn) and this area is becoming more vulnerable to soil and groundwater pollution as precipitation pH shifts to acidic condition.

  • PDF

Effects of Residual Food Fermentation Solution on the production of Lettuce(Lactuca sativa L.) (상추에 대한 남은 음식물 혐기 발효액의 시용 효과)

  • Chang, Ki-Woon;Yu, Young-Seok;Jung, Yun-Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.4
    • /
    • pp.111-116
    • /
    • 2001
  • As part of the recycling methods, residual food through the anaerobic fermentation process was decomposed into methane gas and fermentation liquid. The research was conducted to measure the effect of application of fermentation liquid on chemical properties of soil and plant growth according to application rate and separate manure at the base of nitrogen in fermentation liquid. The fermentation liquid contained 0.52% nitrogen was applied in treatments by standard fertilizer. The treatments were composed of the control only with chemical fertilizer and N-50, N-100-4, N-100-8 were each of applied with 50, 100(6 times), 100(3 times)% of fermentation liquid contrast to standard fertilizer. Properties of fermentation liquid was high EC because of waster soluble organic compounds as well as much of salts and also contained a lot of suspended solid. The changes of soil chemical properties little occurred in before and after of experiment but EC and content of ex. Ca in soil were increased. Fresh weigh in treatments applied with fermentation is high than that of control but the difference between treatments little showed. The above result means if fermentation liquid be used instead of chemical fertilizer the volume of used fermentation liquid will be reduced by 50% of present standard fertilizer.

  • PDF

Residue and risk assessment of veterinary antibiotics in manure-based composts and agricultural soils (가축분뇨 유래 퇴비 및 농경지 중 축산용 항생제의 잔류 및 위해성 평가)

  • Paik, Min-Kyoung;Ryu, Song-Hee;Kim, Sung-Chul;Hong, Young-Kyu;Kim, Jin-Wook;Kim, Jeong-Gyu;Kwon, Oh-Kyung
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.177-184
    • /
    • 2021
  • While veterinary antibiotics are used only in a part of the dose administered, the rest are excreted as urine or feces. Residual antibiotics enter the adjacent agricultural environments by spraying manure-based composts on farmlands and lead to secondary pollution. Therefore, it is necessary to develop the technique for post management such as regulatory levels of antibiotics in the agricultural environments. This study was conducted to compare by different matrices the amount of residual antibiotics such as tetracyclines and sulfonamides, which are known to be frequently used in Korea and to practice risk assessment by different antibiotics in soils before and after application of composts. Pre-treatment with modified typical method using buffer and solid phase extraction showed the recovery of composts and soils was more than 70% at ppb level and the limits of detection were 0.13-0.46 and 0.05-0.25 ㎍/kg, respectively. Analysis of manure-based composts revealed concentrations from 5.38 to 196.0 ㎍/kg for tetracyclines, from below the detection of limit (BDL) to 259.0 ㎍/kg for sulfonamides. In case of agricultural soils, residual concentrations of selected veterinary antibiotics were ranged 0.30-53.3 ㎍/kg, BDL-4.16 ㎍/kg respectively and the concentration level of tetracyclines, which had higher soil distribution coefficient (Kd) values, was higher than that of sulfonamides. There was a difference in human risk assessment by different antibiotics in soil before and after application of composts. But, it was indicated that detection values of all of 5 antibiotics were very safe on the basis that Hazard Quotient was safe below 1.

Process Development of Rotor Shaft using a Large Friction Welding (대형마찰용접을 이용한 로타샤프트 제조공정개발)

  • Jeong, H.S.;Cho, J.R.;Lee, N.K.;Park, H.C.;Choi, S.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.401-404
    • /
    • 2007
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint face, and energy required for welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy, amount of upset, working time, and residual stresses in the joint. Inertia welding was conducted to make the large rotor shaft for low speed marine diesel engine, alloy steel for shaft of 140mm. Due to different material characteristics, such as, thermal conductivity and flow stress, on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters.

  • PDF