• Title/Summary/Keyword: Residual metals

Search Result 290, Processing Time 0.023 seconds

Stabilization of Heavy Metals-contaminated Soils Around the Abandoned Mine area Using Phosphate (인산염을 이용한 휴.폐광산 주변 중금속 오염토양의 안정화처리에 관한 연구)

  • Lee, Eun-Gi;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.100-106
    • /
    • 2007
  • The objective of this study was to evaluate the efficiency of $(NH_4)_2HPO_4$, $Na_2HPO_4{\cdot}12H_2O$, $CaHPO_4{\cdot}2H_2O$, $Ca(H_2PO_4)_2{\cdot}H_2O$ and $H_3PO_4$ for the stabilization of soils contaminated with multi-metals containing Pb, Cd and As. The application rate of stabilizers to soils was determined based on $PO_4/Pb_{total}$ molar ratio of 0.5, 1, 2, 4. The results of Korea Standard Test and TCLP (EPA Method 1311) showed the reduction of metal leachabilities below the regulatory limits for Pb and Cd when $H_3PO_4$ and $Ca(H_2PO_4)_2{\cdot}H_2O$ were applied. However, stabilization efficiency for Cd was low and in case of As leaching concentration increased rather. It is considered that $PO_4$ reacted effectively $Pb^{2+}$ due to leaching Pb under low pH condition created by adding $H_3PO_4$. Accordingly Pb was stabilized by dissolution and precipitation of hydroxypyromorphite. From the change of metals fraction using sequential extraction procedure when $H_3PO_4$ applied as a stabilizer, we confirmed that residual fraction increased more than 60% and this result was accorded with XRD analysis that detected only hydroxypyromorphite peak in $H_3PO_4$.

Sulfur Dioxide, Heavy Metal and Curcumin Contents in Market-Available Turmeric (Curcuma longa L.) (유통 강황의 이산화황, 중금속 및 쿠르쿠민 함량)

  • Lee, Young Ju;Kim, Ae Kyung;Kim, Ouk Hee;Lee, Chun Young;Lee, Hyun Kyung;Jung, Sun Ok;Lee, Sae Ram;Kim, Hee Sun;Kim, Il Young;Yu, In Sil;Jung, Kweon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.2
    • /
    • pp.121-128
    • /
    • 2016
  • Background: Turmeric (Curcuma longa L.) that is used as a food material has antioxidant, anticancer and anti-inflammatory properties. Recently the demand for functional foods and drugs has increased. The present study was carried out to determined of contents of residual sulfur dioxide, heavy metals, ash, acid insoluble ash and curcuminoids in turmeric from the Seoul Yak-ryeong market. Methods and Results: A total of 31 samples were obtained. Residual sulfur dioxide was not detected in any samples. Heavy metals (arsenic, cadmium, lead and mercury) were analyzed by ICP-MS (Inductively Coupled Plasma Mass Spectrometer) and a mercury analyzer and were detected in the ranges of 0.00 - 0.28, 0.00 - 0.07, 0.00 - 0.29 and 0.002 - 0.027mg/g respectively. No significant difference were observed between the average heavy metal contents of domestic and imported tumeric. However, average content of ash in domestic samples (7.8%) were significantly higher than that in imported samples (6.1%), whereas that of curcuminoids was significantly higher in imported samples (47.6mg/g) than in domestic samples (11.2mg/g). The average content of acid insoluble ash was not significantly different between two sample types (0.9% in each). Conclusions: There are no specific standards for turmeric used as food materials. Therefore, this study can be provided as basic data for the establishment of quality standards for turmeric.

Survey on the Contaminated Sediments on Lake Paldang (팔당호 퇴적물 오염 현황 조사)

  • Jung, Yong-Jun
    • Journal of Wetlands Research
    • /
    • v.8 no.4
    • /
    • pp.49-58
    • /
    • 2006
  • The extent and degree of contaminated sediments on lake Paldang were analyzed at 40 sites for organic matters, nutrients and heavy metals. COD, T-N and T-P were fairly correlated with the grain size of sediments, and the sites which were most distributed with sand were less contaminated with the sites covered with silt and clay. Phosphorus species were in the range of 7-58 for adsorbed-P, $13{\sim}411{\mu}g/g$ for NAI-P, $52{\sim}482{\mu}g/g$ for Apatite-P and $75{\sim}894{\mu}g/g$ for residual-P, respectively. Although heavy metals of sediments were detected at the range of $0.2-4.2{\mu}g/g$(Cr), $1.6{\sim}20.7{\mu}g/g$(Cu), 1.4~78.0ng/g(Hg), $2.1{\sim}18.9{\mu}g/g$(Pb), $1.8{\sim}99.5{\mu}g/g$(Zn), further survey over the long period were required for more monitoring data. The release rate of nutrients were found no relationship in this study.

  • PDF

A study of structural analysis for plastic parts considering injection molding effects (성형효과를 고려한 플라스틱 사출품의 구조해석)

  • 박상현;김용환;김선우;이시호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.217-220
    • /
    • 2003
  • Due to the lighter weight and the higher freedom of design than metals plastics have been spot lighted in a wide number of applications. In the making plastic parts injection-molding process is one of the most general methods. During the injection molding process, filling-packing-cooling process, plastics have exposed to several external stresses and then plastic parts injected have molding effects which are known as anisotropic properties, orientation, and residual stress. Those molding effects are often shown as unexpected phenomena which are warpage, strength decrease, stiffness reduction, etc. In case of glass fiber filed plastics these effects are more significant than the ufilled ones. Therefore the molding effects have to be considered in the parts design using glass fiber reinforced plastics. We have developed the interface program in order to consider the molding effects in structural analyses of plastic parts using Heirarchical structural searching and layer handling in direction of thickness algorithm. The advantages of this program are the freedom of FE mesh between molding and structural analysis, the variable layer to the thickness direction of parts and the conveniences of data transferring and checking

  • PDF

Analysis of Joining Strength in Electromagnetic Joining of Metals to High Toughness Polymers (금속과 고분자 재료의 접합강도 해석)

  • Son, Hui-Sik;Kim, Nam-Hwan;Lee, Jong-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.110-116
    • /
    • 1992
  • Electromgnetic joining of aluminum alloy tubes to high toughness polyurethane rubber cores is studied in order to estimate the joining strength and to analyze the effect of the process variables. The equation which can estimate the joining strength is proposed under considering the elastic recovery of the polyurethane core and the radial shrinkage of the core by pulling it axially. The obtained results are as follows : 1) The joining strength is mainly dependent on the magnitude of residual elastic strain of the polyurethane core. 2) The radial shrinkage (residual strain reduction) of the core during the axial pulling causes the joining strength to decrease severely. The equation for the reduced axial strength is proposed and it is found that the estimated values agree well with experimental results. 3) The magnitude of radial shrinkage could be reduced for the smaller value of ratio l/r. 4) The joining strength in metal/polymer joining increases as the friction coefficient increases. But its effect of friction coefficient is insignificant in comparison with the case of metal/metal joining.

  • PDF

Metal/$Al_2O_3-SiO_2$ System Interface Investigations

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.70-73
    • /
    • 2004
  • The packaging of the integrated circuits requires knowledge of ceramics and metals to accommodate the fabrication of modules that are used to construct subsystems and entire systems from extremely small components. Composite ceramics (Al$_2$O$_3$-SiO$_2$) were tested for substrates. A stress analysis was conducted for a linear work-hardening metal cylinder embedded in an infinite ceramic matrix. The bond between the metal and ceramic was established at high temperature and stresses developed during cooling to room temperature. The calculations showed that the stresses depend on the mismatch in thermal expansion, the elastic properties, and the yield strength and work hardening rate of the metal. Experimental measurements of the surface stresses have also been made on a Cu/Al$_2$O$_3$-SiO$_2$ceramic system, using an indentation technique. A comparison revealed that the calculated stresses were appreciably larger than the measured surface stresses, indicating an important difference between the bulk and surface residual stresses. However, it was also shown that porosity in the metal could plastically expand and permit substantial dilatational relaxation of the residual stresses. Conversely it was noted that pore clusters were capable of initiating ductile rupture, by means of a plastic instability, in the presence of appreciable tri-axiality. The role of ceramics for packaging of microelectronics will continue to be extremely challenging.

  • PDF

Role of A-TIG process in joining of martensitic and austenitic steels for ultra-supercritical power plants -a state of the art review

  • Bhanu, Vishwa;Gupta, Ankur;Pandey, Chandan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2755-2770
    • /
    • 2022
  • The need for Dissimilar Welded Joint (DWJ) in the power plant components arises in order to increase the overall efficiency of the plant and to avoid premature failure in the component welds. The Activated-Tungsten Inert Gas (A-TIG) welding process, which is a variant of Tungsten Inert Gas (TIG) welding, is focus of this review work concerning the DWJ of nuclear grade creep-strength enhanced ferritic/martensitic (CSEF/M) steels and austenitic steels. A-TIG DWJs are compared with Multipass-Tungsten Inert Gas (M-TIG) DWJ based on their mechanical and microstructural properties. The limitations of multipass welding have put A-TIG welding in focus as A-TIG provides a weld with increased depth of penetration (DOP) and enhanced mechanical properties. Hence, this review article covers the A-TIG welding principle and working parameters along with detailed analysis of role played by the flux in welding procedure. Further, weld characteristics of martensitic and austenitic steel DWJ developed with the A-TIG welding process and the M-TIG welding process are compared in this study as there are differences in mechanical, microstructural, creep-related, and residual stress obtained in both TIG variants. The mechanics involved in the welding process is deliberated which is revealed by microstructural changes and behavior of base metals and WFZ.

Concentration of Hazardous Substances of before/after a Decoction in Prescription of Herbal Medicine -In Prescription of tonify Yang and tonify Yin- (한방처방의 전탕 전과 후의 위해물질 농도변화 -보양.보음 처방을 중심으로 -)

  • Seo, Chang-Seob;Huang, Dae-Sun;Lee, Jun-Kyoung;Ha, Hye-Kyoung;Chun, Jin-Mi;Um, Young-Ran;Jang, Seol;Shin, Hyeun-Kyoo
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.53-63
    • /
    • 2009
  • Objective : To compare the contents of heavy metals, residual pesticides and sulfur dioxide before/after a decoction. Methods : The heavy metal contents before/after a decoction were measured by Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) and mercury analyzer. In order to analyze pesticides in 4 samples we used simultaneous multi-residue analysis of pesticides by GC/ECD, which was followed by GC/MSD analysis to confirm the identity of the detected pesticide in each sample. In addition, the contents of sulfur dioxide ($SO_2$) were performed by Monier-Williams distillation method. Results: 1. The mean values of heavy metal contents (mg/kg) for the samples were as follows: Jaeumganghwa-tang (before decoction - Pb; 1.190, Cd; 0.184, As; 0.099 and Hg; 0.028, after decoction - Pb; .033, Cd; 0.003, As; 0.005 and Hg; 0.001), Yukmijiwhang-tang (before decoction - Pb; 0.484, Cd; 0.133, As; 0.053 and Hg; 0.009, after decoction - Pb; 0.065, Cd; 0.008, As; 0.007 and Hg; not detected), Bojungikgi-tang (before decoction - Pb; 0.863, Cd; 0.197, As; below 0.016 and Hg; 0.011, after decoction - Pb; 0.071, Cd; 0.009, As; 0.004 and Hg; 0.001) and Ssangwha-tang (before decoction - Pb; 1.511, Cd; 0.212, As; 0.094 and Hg; 0.016, after decoction - Pb; 0.029, Cd; 0.006, As; 0.005 and Hg; 0.0004). 2. Contents (mg/kg) of sulfur dioxide ($SO_2$) before a decoction in Jaeumganghwa-tang, Yukmijiwhang-tang and Ssangwha-tang exhibited 22.7, 107.3 and 5.5, respectively. However, contents of sulfur dioxide after a decoction in all samples were not detected. 3. Contents (mg/kg) of residual pesticides before/after a decoction in all samples were not detected. Conclusion : These results will be used to establish a criterion of heavy metals, residual pesticides and sulfur dioxide.

  • PDF

Effects of Heat Input and Bead Generation Methods on Finite Element Analysis of Cylindrical Multi-Pass Welding Process of Metals (열원 입력과 비드 생성 방법이 원통형 다층 금속 용접 과정의 유한요소해석에 미치는 영향)

  • Park, Won Dong;Bahn, Chi Bum;Kim, Ji Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.455-467
    • /
    • 2017
  • In this study, a finite element analysis of a cylindrical multi-pass weldment for dissimilar metals was performed. The effects of the heat input method and weld bead generation method were considered. We compared two heat input methods: the heat flux method and the temperature method. We also compared two weld bead generation methods: the element birth method and the quiet element method. Although the results of the thermal analysis show deviations between the two heat input methods, the welding residual stresses were similar. Because the areas exposed to high temperature were similar and the strength of the material was very low in high temperature (above the $1000^{\circ}C$), the effects of the weld bead temperature were insignificant. The distributions of the welding residual stress were similar to each other. However, gaps and overlaps occurred on the welding boundary surfaces when the element birth method was applied. The quiet element method is more suitable for a large deformation model in order to simulate a more accurate weld shape.

Property of Nickel Silicides with Hydrogenated Amorphous Silicon Thickness Prepared by Low Temperature Process (나노급 수소화된 비정질 실리콘층 두께에 따른 저온형성 니켈실리사이드의 물성 연구)

  • Kim, Jongryul;Choi, Youngyoun;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.762-769
    • /
    • 2008
  • Hydrogenated amorphous silicon(a-Si : H) layers, 120 nm and 50 nm in thickness, were deposited on 200 $nm-SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by E-beam evaporation. Finally, 30 nm-Ni/120 nm a-Si : H/200 $nm-SiO_2$/single-Si and 30 nm-Ni/50 nm a-Si:H/200 $nm-SiO_2$/single-Si were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 30 minute. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide on the 120 nm a-Si:H substrate showed high sheet resistance($470{\Omega}/{\Box}$) at T(temperature) < $450^{\circ}C$ and low sheet resistance ($70{\Omega}/{\Box}$) at T > $450^{\circ}C$. The high and low resistive regions contained ${\zeta}-Ni_2Si$ and NiSi, respectively. In case of microstructure showed mixed phase of nickel silicide and a-Si:H on the residual a-Si:H layer at T < $450^{\circ}C$ but no mixed phase and a residual a-Si:H layer at T > $450^{\circ}C$. The surface roughness matched the phase transformation according to the silicidation temperature. The nickel silicide on the 50 nm a-Si:H substrate had high sheet resistance(${\sim}1k{\Omega}/{\Box}$) at T < $400^{\circ}C$ and low sheet resistance ($100{\Omega}/{\Box}$) at T > $400^{\circ}C$. This was attributed to the formation of ${\delta}-Ni_2Si$ at T > $400^{\circ}C$ regardless of the siliciation temperature. An examination of the microstructure showed a region of nickel silicide at T < $400^{\circ}C$ that consisted of a mixed phase of nickel silicide and a-Si:H without a residual a-Si:H layer. The region at T > $400^{\circ}C$ showed crystalline nickel silicide without a mixed phase. The surface roughness remained constant regardless of the silicidation temperature. Our results suggest that a 50 nm a-Si:H nickel silicide layer is advantageous of the active layer of a thin film transistor(TFT) when applying a nano-thick layer with a constant sheet resistance, surface roughness, and ${\delta}-Ni_2Si$ temperatures > $400^{\circ}C$.