• 제목/요약/키워드: Residual bond strength

검색결과 76건 처리시간 0.026초

지르코니아 필러를 첨가한 복합레진의 기계적 성질에 관한 연구 (A STUDY ON THE MECHANICAL PROPERTIES OF EXPERIMENTAL, COMPOSITES CONTAINING ZIRCONIA FILLER)

  • 류경희;최호영;최경규;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제25권3호
    • /
    • pp.421-434
    • /
    • 2000
  • The purpose of this study was to evaluate the influences of incorporation of zirconium-silicate on diametral tensile strength, shear bond strength to the enamel, and depth of cure of 7 experimental composites. One group contained no filler(group 1 or control group), and the other 6 composites contain 75% filler in which zirconium-silicate(Zr-Si) were 0%, 2%, 4%, 6%, 8%, 10% with reduced contents of silica filler, respectively. Both of fillers were treated with 1% silane (${\gamma}$-methacryloxypropyltrimethoxy silane). Light curable monomers were prepared by mixing Bis-GMA and TEGDMA with 3:1 ratio and adding camphoroquinone(CQ) 0.6% with tertiary amine 0.3%. Diametral tensile strengths of specimens with $3mm{\times}6mm$ were measured with Instron (No.4467, USA) with 1mm/min crosshead speed. Shear bond strengths of composites which bonded to bovine enamel etched with 37% phosphoric acid were measured at Instron Testing Machine with as same speed as in diametral tensile strengths. Depth of cure were measured by a method that composite was filled in cylinder mold, illuminated at one side. and uncured composite was removed with acetone, and the residual thickness of composite was measured. Following results were obtained ; 1. Composites containing 0%, 2%, or 4% zirconium-silicate filler(group 2, 3 and 4) showed the statistically higher diametral tensile strength than the others. (p<0.05) 2. Increase of zirconium-silicate filler contents reduced the diametral tensile strength of experimental composites. ($r^2$=0.8721, p=0.0002) 3. Increase of zirconium-silicate filler contents did not affect the shear bond strength of experimental composites. ($r^2$=0.2815, p=0.4067) 4. Increase of zirconium-silicate filler contents reduced significantly the depth of cure of experimental composites. ($r^2$=0.9700, p<0.0001) These results mean that the mechanical properties of composites could not be improved by incorporation of small amount of zirconium-silicate filler. Also, the increased contents of zirconium-silicates fillers was found to reduce the diametral tensile strength and depth of cure.

  • PDF

Rock burst criteria of deep residual coal pillars in an underground coal mine: a case study

  • Qiu, Pengqi;Wang, Jun;Ning, Jianguo;Liu, Xuesheng;Hu, Shanchao;Gu, Qingheng
    • Geomechanics and Engineering
    • /
    • 제19권6호
    • /
    • pp.499-511
    • /
    • 2019
  • The reliability of reinforced concrete structures is frequently compromised by the deterioration caused by reinforcement corrosion. Evaluating the effect caused by reinforcement corrosion on structural behaviour of corrosion damaged concrete structures is essential for effective and reliable infrastructure management. In lifecycle management of corrosion affected reinforced concrete structures, it is difficult to correctly assess the lifecycle performance due to the uncertainties associated with structural resistance deterioration. This paper presents a stochastic deterioration modelling approach to evaluate the performance deterioration of corroded concrete structures during their service life. The flexural strength deterioration is analytically predicted on the basis of bond strength evolution caused by reinforcement corrosion, which is examined by the experimental and field data available. An assessment criterion is defined to evaluate the flexural strength deterioration for the time-dependent reliability analysis. The results from the worked examples show that the proposed approach is capable of evaluating the structural reliability of corrosion damaged concrete structures.

화재시 횡구속재 변화에 따른 고성능 콘크리트의 폭열방지성능에 관한 기초적 연구 (A Fundamental Study on the Performance of Spalling Resistance of High Performance Concrete with Material of Lateral Confinement Subjected to Fire)

  • 배정렬;황인성;홍상희;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술논문발표회
    • /
    • pp.47-50
    • /
    • 2002
  • This paper presents the results of fire resistance properties of high performance concrete varying with fiber kinds and the size of metal lath in order to verify the validities of fiber on the spatting resistance by fire. Metal lath, glass fiber and carbon fiber are used to confine the concrete. According to test results, plain concrete without lateral confinement and confined concrete with glass fiber and carbon fiber show entire failure after exposed to fire, while confined concrete with metal lath take place in the form of slight surface spatting by fire, which has favorable spatting resistance of concrete. As for the effect of the size of metal lath, when the size of metal lath is more than 1.2mm of thickness, the residual strength of concrete exposed to fire maintains more than 80% of its original strength. However, glass fiber and carbon fiber does not perform desirable spatting resistance by fire due to loss of lateral confinement of fiber exposed to fire caused by melting of fiber and reducing bond strength between concrete and fiber.

  • PDF

Metal/$Al_2O_3-SiO_2$ System Interface Investigations

  • Korobova, N.;Soh, Deawha
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 SMICS 2004 International Symposium on Maritime and Communication Sciences
    • /
    • pp.70-73
    • /
    • 2004
  • The packaging of the integrated circuits requires knowledge of ceramics and metals to accommodate the fabrication of modules that are used to construct subsystems and entire systems from extremely small components. Composite ceramics (Al$_2$O$_3$-SiO$_2$) were tested for substrates. A stress analysis was conducted for a linear work-hardening metal cylinder embedded in an infinite ceramic matrix. The bond between the metal and ceramic was established at high temperature and stresses developed during cooling to room temperature. The calculations showed that the stresses depend on the mismatch in thermal expansion, the elastic properties, and the yield strength and work hardening rate of the metal. Experimental measurements of the surface stresses have also been made on a Cu/Al$_2$O$_3$-SiO$_2$ceramic system, using an indentation technique. A comparison revealed that the calculated stresses were appreciably larger than the measured surface stresses, indicating an important difference between the bulk and surface residual stresses. However, it was also shown that porosity in the metal could plastically expand and permit substantial dilatational relaxation of the residual stresses. Conversely it was noted that pore clusters were capable of initiating ductile rupture, by means of a plastic instability, in the presence of appreciable tri-axiality. The role of ceramics for packaging of microelectronics will continue to be extremely challenging.

  • PDF

An experimental and numerical investigation on fatigue of composite and metal aircraft structures

  • Pitta, Siddharth;Rojas, Jose I.;Roure, Francesc;Crespo, Daniel;Wahab, Magd Abdel
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.19-30
    • /
    • 2022
  • The static strength and fatigue crack resistance of the aircraft skin structures depend on the materials used and joint type. Most of the commercial aircraft's skin panel structures are made from aluminium alloy and carbon fibre reinforced epoxy. In this study, the fatigue resistance of four joint configurations (metal/metal, metal/composite, composite/composite and composite/metal) with riveted, adhesive bonded, and hybrid joining techniques are investigated with experiments and finite element analysis. The fatigue tests were tension-tension because of the typical nature of the loads on aircraft skin panels susceptible of experimenting fatigue. Experiment results suggest that the fatigue life of hybrid joints is superior to adhesive bonded joints, and these in turn much better than conventional riveted joints. Thanks to the fact that, for hybrid joints, the adhesive bond provides better load distribution and ensures load-carrying capacity in the event of premature adhesive failure while rivets induce compressive residual stresses in the joint. Results from FE tool ABAQUS analysis for adhesive bonded and hybrid joints agrees with the experiments. From the analysis, the energy release rate for adhesive bonded joints is higher than that of hybrid joints in both opening (mode I) and shear direction (mode II). Most joints show higher energy release rate in mode II. This indicates that the joints experience fatigue crack in the shear direction, which is responsible for crack opening.

법랑질의 표면처리가 광중합형 및 화학중합형 글래스아이오노머 시멘트의 전단결합강도에 미치는 영향 (THE EFFECTS OF SURFACE TREATMENTS ON SHEAR BOND STRENGTHS OF LIGHT-CURED AND CHEMICALLY CURED GLASS IONOMER CEMENTS TO ENAMEL)

  • 신강섭;이기수
    • 대한치과교정학회지
    • /
    • 제25권2호
    • /
    • pp.223-233
    • /
    • 1995
  • 이 연구는 법랑질의 표면처리가 광중합형 및 화학중합형 글래스아이오노머 시멘트의 브라켓 전단결합강도에 미치는 영향을 구명하고, 글래스아이오노머 시멘트의 브라켓전단결합강도와 치과교정용 레진접착제의 그것과 비교하기 위하여 시행하였다. 발거된 사람소구치의 법랑질표면을 $10\%$ 폴리아크릴산용액, $38\%$ 인산용액과 퍼미스로 처리한 후, 광중합형 글래스아이오노머 시멘트의 일종, 화학중합형 글래스아이오노머 시멘트의 일종 및 화학중합형 치과교정용 레진접착제의 일종으로 법랑질표면에 금속브라켓을 접착하고, $37^{\circ}C$의 증류수속에 24시간 침지시킨후, 브라켓전단결합강도를 측정하고, 접착파정패턴을 관찰하였으며, 표면처리된 법랑질표면을 주사전자현미경으로 관철하여 다음과 같은 결과와 결론을 얻었다. 1. 표면처리방법에 관계없이 광중합형 글래스아이오노머 시멘트의 브라켓전단결합강도는 화학중합형 글래스아이오노머 시멘트의 그것보다 높았다. 2. $38\%$ 인산용액과 $10\%$ 폴리아크릴산용액은 퍼미 스보다 글래스아이오노머 시멘트의 브라켓전단결합강도를 높였다. 3. 주사전자현미경 관찰에서 $10\%$ 폴리아크릴산용액은 법랑질표면을 미약하게 부식시키고 청결하게 하였으며, $38\%$ 인산용액은 법랑질을 심하게 부식시켰고, 퍼미스를 이용한 세마는 법랑질표면에 불규칙한 흠집을 만들고 청결하지 못한 표면을 만들었다. 4. $10\%$ 폴리아크릴산용액으로 표면조건화된 법랑질에 대한 광중합형 글래스아이오노머 시멘트의 브라켓 전단결합강도는 $38\%$ 인산용액으로 부식된 법랑질에 대한 치과교정용 레진접착제의 그것과 유의차가 없었다. 이상의 결과는 $10\%$폴리아크릴산용액으로 표면조건화시킨 광중합형 글래스아이오노머 시멘트에 의한 브라켓접착은 통상적으로 사용되어온 치과교정용 레진접착제에 의한 브라켓 접착을 대체할 수 있음을 시사한다.

  • PDF

상아질 접착제의 용매 증발이 접착 효율에 미치는 영향 (The effect of solvent evaporation of dentin adhesive on bonding efficacy)

  • 조민우;김지연;김덕수;최경규
    • Restorative Dentistry and Endodontics
    • /
    • 제35권5호
    • /
    • pp.321-334
    • /
    • 2010
  • 연구목적: 본 연구는 상아질 접착제의 잔류 용매가 접착 효율에 미치는 영향을 평가하고자 하였다. 연구 재료 및 방법: 본 연구에서는 5세대 2단계 산부식형 접착제와 7세대 단일과정 자가부식형 접착제를 사용하였다. 상아질 접착제의 증발률과 전환률, 적용 후 용매의 공기건조 방법에 따른 미세인장결합강도를 측정하였으며 접착 계면을 FE-SEM을 이용하여 관찰하였다. 결과: 1. 시간에 따라 접착제의 증발률은 증가하나 접착제의 종류에 따라 증가 양상이 서로 달랐다. 2. 대부분 전환률은 증발률에 비례하는 경향을 나타내었다. 3. 공기건조 방법에 따라 결합강도는 대부분 under군, control군, over군 순으로 증가하는 양상을 나타내었다. 4. FE-SEM에서 아세톤을 용매로 사용하는 접착제는 공기건조 방법에 따라 droplet이나 gap이 관찰되었다. 결론: 상아질 접착제의 잔류 용매는 접착 효율에 부정적인 영향을 미치기 때문에, 상아질 접착제의 선택과 사용 시 용매의 종류와 특징에 대한 적절한 이해가 필요할 것이다.

도재 냉각방법의 차이가 금속-도재간 열팽창 양상과 결합력에 미치는 영향 (INFLUENCE OF COOLING RATE ON THERMAL EXPANSION BEHAVIOR AND FLEXURAL FAILURE OF PFM SYSTEMS)

  • 임애란;임호남;박남수
    • 대한치과보철학회지
    • /
    • 제28권1호
    • /
    • pp.165-191
    • /
    • 1990
  • Although a number of studies have been performed to assure that residual stress caused by a mismatch of alloy porcelain thermal expansion can contribute to clinical failure of a ceramometal restoration, the interactive influence of cooling rate on the magnitude of thermal expansion difference and on bond strength between them have not been extensively analyzed. The objective of this study was to determine the influence of cooling rate and the number of firing cycles on the expansion mismatch and the flexural failure resistance of metal porcelain strip. Tested alloys included one Pd-Ag alloy, one Ni-Cr-Be alloy with two kinds of porcelain, Vita and Ceramco. Metal specimens were cast into rods with a height of 13mm and a diameter of 5mm. Subsequently, the castings were subjected to scheduled firing cycles without porcelain. And the porcelain specimens after being fired were trimmed into a bar with a final dimension of $5{\times}5{\times}25mm$. Thermal expansions of the alloys and porcelains were measured by using a push rod or a differential dialometer respecitvely. Porcelain glass transition temperatures and expansion values were derived alloy-porcelain pairs were assessed by comparing expansion values of the components at a porcelain glass transition temperature. Calculations were made using combinations of a Ni-Cr alloy or Pd-Ag alloy with each of two porcelain products. Metal-porcelain strip specimens were subjected to four point loading in an Instron testing machine until crack occured at the metal-cramic interface at the time of sharp decrease of load on recorder. On the basis of this study, the following conclusions may be stated: 1. Regardless of the kinds of ceramometal combinations, both of calculated and experimental data revealed that the double fired specimens exhibited a significantly lower flexural strength. 2. By the rise of the amount of mismatch, bond strength were decreased. 3. Thermal expansion value of Pd-Ag alloys were higher than that of Ni-Cr alloys. 4. Expansion curves of metal were proportional to the increase of temperature and were not affected by the experimental conditions, however porcelains did not show the same magnitude of metal, and a shift of the glass transition temperature to higher temperatures was observed when cooled rapidly 5. Alloy-porcelain thermal compatibility appeared more dependent on the porcelain than the alloy.

  • PDF

도재 냉각방법의 차이가 금속-도재간 열팽창 양상과 결합력에 미치는 영향 (INFLUENCE OF COOLING RATE ON THERMAL EXPANSION BEHAVIOR AND FLEXURAL FAILURE OF PFM SYSTEMS)

  • 임애란;임호남;박남수
    • 대한치과보철학회지
    • /
    • 제29권1호
    • /
    • pp.111-137
    • /
    • 1991
  • Although a number of studies have been performed to assure that residual stress caused by a mismatch of alloy porcelain thermal expansion can contribute to clinical failure of a ceramometal restoratoin, the interactive influence of cooling rate on the magnitude of thermal expansion difference and on bond strength between them have not been extensively analyzed. The objective of this study was to determine the influence of cooling rate and the number of firing cycles on the expansion mismatch and the flexural failure resistance of metal porcelain strip. Tested alloys included one Pd-Ag alloy, one Ni-Cr-Be alloy with two kinds of porcelain, Vita and Ceramco. Metal specimens were cast into rods with a height of 13mm and a diameter of 5mm. Subsequently, the castings were subjected to scheduled firing cycles without porcelain. And the porcelain specimens after being fired were trimmed into a bar with a final dimension of 5 x 5 x 25mm. Thermal expansions of the alloys and porcelains were measured by using a push rod or a differential dialometer respectively. Porcelain glass transition temperatures and expansion values were derived alloy- porcelain pairs were assessed by comparing expansion values of the components at a porcelain glass transition temperature. Calculations were made using combinations of a Ni-Cr alloy or Pd-Ag alloy with each of two porcelain products. Metal- porcelain strip specimens were subjected to four point loading in an Instron testing machine until crack occured at the metal-cramic interface at the time of sharp decrease of load on recorder. On the basis of this study, the following conclusions may be stated : 1. Regardless of the kinds of ceramometal combinations, both of calculated and experimental data revealed that the double fired specimens exhibited a significantly lower flexural strength. 2. By the rise of the amount of mismatch, bond strength were decreased. 3. Thermal expansion value of Pd-Ag alloys were higher than of Ni-Cr alloys. 4. Expansion curves of metal were proportional to the increase of temperature and were not affected by the experimental conditions, however porcelains did not show the same magnitude of metal, and a shift of the glass transition temperature to higher temperatures was observed when cooled rapidly. 5. Alloy- porcelain thermal compatibility appeared more dependent on the porcelain than the alloy.

  • PDF

Debonding forces of three different customized bases of a lingual bracket system

  • Sung, Jang-Won;Kwon, Tae-Yub;Kyung, Hee-Moon
    • 대한치과교정학회지
    • /
    • 제43권5호
    • /
    • pp.235-241
    • /
    • 2013
  • Objective: The purpose of this study was to investigate whether extension of the custom base is necessary for enhancement of bond strength, by comparing the debonding forces and residual adhesives of 3 different lingual bracket systems. Methods: A total of 42 extracted upper premolars were randomly divided into 3 groups of 14 each for bonding with brackets having (1) a conventional limited resin custom base; (2) an extended gold alloy custom base: Incognito${TM}$; and (3) an extended resin custom base: KommonBase${TM}$. The bonding area was measured by scanning the bracket bases with a 3-dimensional digital scanner. The debonding force was measured with an Instron universal testing machine, which applied an occlusogingival shear force. Results: The mean debonding forces were 60.83 N (standard deviation [SD] 10.12), 69.29 N (SD 9.59), and 104.35 N (SD17.84) for the limited resin custom base, extended gold alloy custom base, and extended resin custom base, respectively. The debonding force observed with the extended resin custom base was significantly different from that observed with the other bases. In addition, the adhesive remnant index was significantly higher with the extended gold alloy custom base. Conclusions: All 3 custom-base lingual brackets can withstand occlusal and orthodontic forces. We conclude that effective bonding of lingual brackets can be obtained without extension of the custom base.