DOI QR코드

DOI QR Code

Debonding forces of three different customized bases of a lingual bracket system

  • Sung, Jang-Won (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Kwon, Tae-Yub (Department of Dental Biomaterials, School of Dentistry, Kyungpook National University) ;
  • Kyung, Hee-Moon (Department of Orthodontics, School of Dentistry, Kyungpook National University)
  • Received : 2012.12.05
  • Accepted : 2013.05.16
  • Published : 2013.10.25

Abstract

Objective: The purpose of this study was to investigate whether extension of the custom base is necessary for enhancement of bond strength, by comparing the debonding forces and residual adhesives of 3 different lingual bracket systems. Methods: A total of 42 extracted upper premolars were randomly divided into 3 groups of 14 each for bonding with brackets having (1) a conventional limited resin custom base; (2) an extended gold alloy custom base: Incognito${TM}$; and (3) an extended resin custom base: KommonBase${TM}$. The bonding area was measured by scanning the bracket bases with a 3-dimensional digital scanner. The debonding force was measured with an Instron universal testing machine, which applied an occlusogingival shear force. Results: The mean debonding forces were 60.83 N (standard deviation [SD] 10.12), 69.29 N (SD 9.59), and 104.35 N (SD17.84) for the limited resin custom base, extended gold alloy custom base, and extended resin custom base, respectively. The debonding force observed with the extended resin custom base was significantly different from that observed with the other bases. In addition, the adhesive remnant index was significantly higher with the extended gold alloy custom base. Conclusions: All 3 custom-base lingual brackets can withstand occlusal and orthodontic forces. We conclude that effective bonding of lingual brackets can be obtained without extension of the custom base.

Keywords

References

  1. Kyung HM. Individual indirect bonding technique (IIBT) using set-up model. Taehan Chikkwa Uisa Hyophoe Chi 1989;27:73-82.
  2. Wiechmann D. A new bracket system for lingual orthodontic treatment. Part 1: Theoretical background and development. J Orofac Orthop 2002;63: 234-45. https://doi.org/10.1007/s00056-002-0211-5
  3. Fillion D. Clinical advantages of the Orapix-straight wire lingual technique. Int Orthod 2010;8:125-51.
  4. Komori A, Fujisawa M, Iguchi S. KommonBase for precise direct bonding of lingual orthodontic brackets. Int Orthod 2010;8:14-27.
  5. Artun J, Bergland S. Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am J Orthod 1984;85:333-40. https://doi.org/10.1016/0002-9416(84)90190-8
  6. Finnema KJ, Ozcan M, Post WJ, Ren Y, Dijkstra PU. In-vitro orthodontic bond strength testing: a systematic review and meta-analysis. Am J Orthod Dentofacial Orthop 2010;137:615-22.e3. https://doi.org/10.1016/j.ajodo.2009.12.021
  7. Stanford SK, Wozniak WT, Fan PL. The need for standardization of test protocols. Semin Orthod 1997;3:206-9. https://doi.org/10.1016/S1073-8746(97)80071-0
  8. Powers JM, Kim HB, Turner DS. Orthodontic adhesives and bond strength testing. Semin Orthod 1997;3:147-56. https://doi.org/10.1016/S1073-8746(97)80065-5
  9. Gittner R, Müller-Hartwich R, Jost-Brinkmann PG. Influence of various storage media on shear bond strength and enamel fracture when debonding ceramic brackets: an in vitro study. Semin Orthod 2010; 16:49-54. https://doi.org/10.1053/j.sodo.2009.12.004
  10. Park SB, Son WS, Ko CC, García-Godoy F, Park MG, Kim HI, et al. Influence of flowable resins on the shear bond strength of orthodontic brackets. Dent Mater J 2009;28:730-4. https://doi.org/10.4012/dmj.28.730
  11. Ryou DB, Park HS, Kim KH, Kwon TY. Use of flowable composites for orthodontic bracket bonding. Angle Orthod 2008;78:1105-9. https://doi.org/10.2319/013008-51.1
  12. D'Attilio M, Traini T, Di Iorio D, Varvara G, Festa F, Tecco S. Shear bond strength, bond failure, and scanning electron microscopy analysis of a new flowable composite for orthodontic use. Angle Orthod 2005;75:410-5.
  13. Tecco S, Traini T, Caputi S, Festa F, de Luca V, D'Attilio M. A new one-step dental flowable composite for orthodontic use: an in vitro bond strength study. Angle Orthod 2005;75:672-7.
  14. Mavropoulos A, Cattani-Lorente M, Krejci I, Staudt CB. Kinetics of light-cure bracket bonding: power density vs exposure duration. Am J Orthod Dentofacial Orthop 2008;134:543-7. https://doi.org/10.1016/j.ajodo.2006.09.068
  15. Silta YT, Dunn WJ, Peters CB. Effect of shorter polymerization times when using the latest generation of light-emitting diodes. Am J Orthod Dentofacial Orthop 2005;128:744-8. https://doi.org/10.1016/j.ajodo.2004.09.029
  16. Swanson T, Dunn WJ, Childers DE, Taloumis LJ. Shear bond strength of orthodontic brackets bonded with light-emitting diode curing units at various polymerization times. Am J Orthod Dentofacial Orthop 2004;125:337-41. https://doi.org/10.1016/j.ajodo.2003.04.011
  17. Cacciafesta V, Sfondrini MF, Scribante A, Boehme A, Jost-Brinkmann PG. Effect of light-tip distance on the shear bond strengths of composite resin. Angle Orthod 2005;75:386-91.
  18. Sfondrini MF, Cacciafesta V, Scribante A, Boehme A, Jost-Brinkmann PG. Effect of light-tip distance on the shear bond strengths of resin-modified glass ionomer cured with high-intensity halogen, lightemitting diode, and plasma arc lights. Am J Orthod Dentofacial Orthop 2006;129:541-6. https://doi.org/10.1016/j.ajodo.2005.12.025
  19. Klocke A, Shi J, Kahl-Nieke B, Bismayer U. Bond strength with custom base indirect bonding techniques. Angle Orthod 2003;73:176-80.
  20. Yi GK, Dunn WJ, Taloumis LJ. Shear bond strength comparison between direct and indirect bonded orthodontic brackets. Am J Orthod Dentofacial Orthop 2003;124:577-81. https://doi.org/10.1016/S0889-5406(03)00503-1
  21. Linn BJ, Berzins DW, Dhuru VB, Bradley TG. A comparison of bond strength between direct- and indirect-bonding methods. Angle Orthod 2006; 76:289-94.
  22. Reynolds IR. A review of direct orthodontic bonding. Br J Orthod 1975;2:171-8.
  23. Cozza P, Martucci L, De Toffol L, Penco SI. Shear bond strength of metal brackets on enamel. Angle Orthod 2006;76:851-6.
  24. MacColl GA, Rossouw PE, Titley KC, Yamin C. The relationship between bond strength and orthodontic bracket base surface area with conventional and microetched foil-mesh bases. Am J Orthod Dentofacial Orthop 1998;113:276-81. https://doi.org/10.1016/S0889-5406(98)70297-5
  25. Wang WN, Li CH, Chou TH, Wang DD, Lin LH, Lin CT. Bond strength of various bracket base designs. Am J Orthod Dentofacial Orthop 2004;125:65-70. https://doi.org/10.1016/j.ajodo.2003.01.003
  26. Sharma-Sayal SK, Rossouw PE, Kulkarni GV, Titley KC. The influence of orthodontic bracket base design on shear bond strength. Am J Orthod Dentofacial Orthop 2003;124:74-82. https://doi.org/10.1016/S0889-5406(03)00311-1
  27. Eliades T, Brantley WA. The inappropriateness of conventional orthodontic bond strength assessment protocols. Eur J Orthod 2000;22:13-23. https://doi.org/10.1093/ejo/22.1.13

Cited by

  1. MRI with intraoral orthodontic appliance—a comparativein vitroandin vivostudy of image artefacts at 1.5 T vol.44, pp.6, 2015, https://doi.org/10.1259/dmfr.20140416
  2. Dental Hygiene and Orthodontics: Effect of Ultrasonic Instrumentation on Bonding Efficacy of Different Lingual Orthodontic Brackets vol.2017, pp.None, 2013, https://doi.org/10.1155/2017/3714651
  3. Orthodontic Metallic Lingual Brackets: The Dark Side of the Moon of Bond Failures? vol.8, pp.3, 2013, https://doi.org/10.3390/jfb8030027
  4. Debonding force and shear bond strength of an array of CAD/CAM-based customized orthodontic brackets, placed by indirect bonding- An In Vitro study vol.13, pp.9, 2013, https://doi.org/10.1371/journal.pone.0202952
  5. Area and Volume of Remaining Cement and Enamel after Removal and Polishing of Buccal or Lingual Multibracket Appliances vol.11, pp.4, 2013, https://doi.org/10.3390/app11041719
  6. Curvature-dependent shear bond strength of different attachment materials for orthodontic lingual indirect bonding vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-96164-3