• Title/Summary/Keyword: Residual bond strength

Search Result 76, Processing Time 0.026 seconds

Local bond-slip behavior of fiber reinforced LWAC after exposure to elevated temperatures

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.437-445
    • /
    • 2020
  • The microstructure and mechanical properties of concrete will degrade significantly at high temperatures, thus affecting the bond strength between reinforcing steel and surrounding concrete in reinforced concrete members. In this study, the effect of individual and hybrid fiber on the local bond-slip behavior of lightweight aggregate concrete (LWAC) after exposure to elevated temperatures was experimentally investigated. Tests were conducted on local pullout specimens (150 mm cubes) with a reinforcing bar embedded in the center section. The embedment lengths of the pullout specimens were 4.2 times the bar diameter. The parameters investigated included concrete type (control group: ordinary LWAC; experimental group: fiber reinforced LWAC), concrete strength, fiber type, and targeted temperature. The test results showed that for medium-strength LWACs exposed to high temperatures, the use of only steel fibers did not significantly increase the residual bond strength. Moreover, the addition of individual and hybrid fiber had little effect on the residual bond strength of the high-strength LWAC after exposure to a temperature of 800℃.

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Study on bond behavior of steel reinforced high strength concrete after high temperatures

  • Chen, Zongping;Zhou, Ji;Wang, Xinyue
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.113-125
    • /
    • 2020
  • This paper presents experimental results on bond-slip behavior of steel reinforced high-strength concrete (SRHC) after exposure to elevated temperatures. Three parameters were considered in this test: (a) high temperatures (i.e., 20℃, 200℃, 400℃, 600℃, 800℃); (b) concrete strength (i.e., C60, C70, C80); (c) anchorage length (i.e., 250 mm, 400 mm). A total of 17 SRHC specimens subjected to high temperatures were designed for push out test. The load-slip curves at the loading end and free end were obtained, the influence of various variation parameters on the ultimate bond strength and residual bond strength was analyzed, in addition, the influence of elevated temperatures on the invalidation mechanism was researched in details. Test results show that the shapes of load-slip curves at loading ends and free ends are similar. The ultimate bond strength and residual bond strength of SRHC decrease first and then recover partly with the temperature increasing. The bond strength is proportional to the concrete strength, and the bond strength is proportional to the anchoring length when the temperature is low, while the opposite situation occurs when the temperature is high. What's more, the bond damage of specimens with lower temperature develops earlier and faster than the specimens with higher temperature. From these experimental findings, the bond-slip constitutive formula of SRHC subjected to elevated temperatures is proposed, which fills well with test data.

Local bond-slip behavior of medium and high strength fiber reinforced concrete after exposure to high temperatures

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.477-485
    • /
    • 2018
  • This study aims to investigate the influence of individual and hybrid fiber on the local bond-slip behavior of medium and high strength concrete after exposure to different high temperatures. Tests were conducted on local pullout specimens (150 mm cubes) with a reinforcing bar embedded in the center section. The embedment lengths in the pullout specimens were three times the bar diameter. The parameters investigated include concrete type (control group: ordinary concrete; experimental group: fiber concrete), concrete strength, fiber type and targeted temperature. The test results showed that the ultimate bond stress in the local bond stress versus slip curve of the high strength fiber reinforced concrete was higher than that of the medium strength fiber reinforced concrete. In addition, the use of hybrid combinations of steel fiber and polypropylene fiber can enhance the residual bond strength ratio of high strength concrete.

Residual bond behavior of high strength concrete-filled square steel tube after elevated temperatures

  • Chen, Zongping;Liu, Xiang;Zhou, Wenxiang
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.509-523
    • /
    • 2018
  • This paper presents experimental results on the residual bond-slip behavior of high strength concrete-filled square steel tube (HSCFST) after elevated temperatures. Three parameters were considered in this test: (a) temperature (i.e., $20^{\circ}C$, $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$, $800^{\circ}C$); (b) concrete strength (i.e., C60, C70, C80); (c) anchorage length (i.e., 250 mm, 400 mm). A total of 17 HSCFST specimens were designed for push-out test after elevated temperatures. The load-slip curves at the loading end and free end were obtained, in addition, the distribution of steel tube strain and the bond stress along the anchorage length were analyzed. Test results show that the shape of load-slip curves at loading ends and free ends are similar. With the temperature constantly increasing, the bond strength of HSCFST increases first and then decreases; furthermore, the bond strength of HSCFCT proportionally increases with the anchoring length growing. Additionally, the higher the temperature is, the smaller and lower the bond damage develops. The energy dissipation capacity enhances with the concrete strength rasing, while, decreases with the temperature growing. What is more, the strain and stress of steel tubes are exponentially distributed, and decrease from the free end to loading end. According to experimental findings, constitutive formula of the bond slip of HSCFST experienced elevated temperatures is proposed, which fills well with test data.

Evaluation of Bond Strength of a Fire-Damaged Reinforced Concrete Structure (화재로 인해 손상 받은 철근콘크리트 구조물의 콘크리트 부착강도 평가)

  • 심종성;문도영;이정환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.211-213
    • /
    • 2003
  • Evaluation of bond strength of a fire-damaged reinforced concrete structure for determining whether to reuse, reinforced, or abandon the structure is very important. Recently, calculating method for changes in bond strength of rebars is proposed by C. Chiang. The equation is relating the ratio of residual bond strength, R, to temperature, T, and exposure time, t. This study presented and verified a general process for evaluating damage to bond strength of RC structure arising from high temperature.

  • PDF

A Study on the Adhesion Strength and Residual Stress Measurement of Plasma Sprayed Cr$_3$C$_2$-NiCr Coating (크롬탄화물 용사피막의 접착력 및 잔류응력측정에 관한 연구)

  • ;;Kim, E. H.;Kwun, S. I.
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 1996
  • The plasma sprayed Cr$_{2}$C$_{2}$-NiCr coatings are widely used as wear-resistant and corrosion-resistant materials. The mechanical properties of the plasma sprayed Cr$_{2}$C$_{2}$-NiCr coatings were examined in this study. The distribution of the residual stress with the coating thickness was also examined by X-ray diffraction method. The pore in the coatings could be classified into two types ; one is the intrinsic pore originated from the spraying powder, the other is the extrinsic pore formed during spraying. During the tensile adhesion test, the fracture occurred at the interface of top coat and substrate or top coat and bond coat depending on the existence of bond coat. It was found that the compressive residual stress near the interface decreased with the increase of the top coat thickness. The tensile adhesion strength of the coating without bond coat was higher than that with bond coat, because the coating with bond coat has higher horizontal crack density near the interface between bond coat and top coat.

  • PDF

THE EFFECT OF REMOVAL OF RESIDUAL PEROXIDE ON THE SHEAR BOND STRENGTH AND THE FRACTURE MODE OF COMPOSITE RESIN-ENAMEL AFTER TOOTH BLEACHING (생활치 표백술 후 수종의 자유 산소기 제거제 처리가 복합 레진-법랑질 전단 접착 강도 및 파절 양상에 미치는 영향)

  • 임경란;금기연;김애리;장수미
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.399-408
    • /
    • 2001
  • Tooth bleaching has been prevailing recently for its ability to recover the color and shape of natural teeth without reduction of tooth material. However, it has been reported that bleaching procedure adversely affects the adhesive bond strength of composite resin to tooth. At the same time the bond strength was reported to be regained by application of some chemical agents. The purpose of this in vitro study was to investigate the effect of the removal of residual peroxide on the composite- enamel adhesion and also evaluated fracture mode between resin and enamel after bleaching. Sixty extracted human anterior and premolars teeth were divided into 5 groups and bleached by combined technique using of office bleaching with 35 % hydrogen peroxide and matrix bleaching with 10% carbamide peroxide for 4 weeks. After bleaching, the labial surfaces of each tooth were treated with catalase, 70% ethyl alcohol, distilled water and filled with composite resin. Shear bond strength was tested and the fractured surfaces were also examined with SEM. Analysis revealed significantly higher bond strength values. (p<0.05) for catalase-treated specimens, but water-treated specimens showed reduction of bond strength, alcohol- treated specimens had medium value between the two groups(p<0.05). The fracture mode was shown that the catalase group and the alcohol group had cohesive failure but the water sprayed group had adhesive failure. It was concluded that the peroxide residues in tooth after bleaching seems to be removed by gradual diffusion and the free radical oxygen from peroxide prevents polymerization by combining catalyst in the resin monomer. Therefore it may be possible to eliminate the adverse effect on the adhesion of composite resin to enamel after bleaching by using water displacement solution or dentin bonding agent including it for effective removal of residual peroxide.

  • PDF

Evaluation of Residual Bond Stress between Carbon-fiber Reinforced Polymer and Steel Rebar Using Ultra-High-Performance-Concrete after Elevated Temperature (초고강도 콘크리트를 활용한 고온가열 이후의 탄소 보강근과 철근의 잔류 부착성능 평가)

  • Yoo, Sun-Jae;Lee, Ho-Jin;Yuan, Tian-Feng;Yoon, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.169-176
    • /
    • 2021
  • In this study, pull-out tests were conducted at room temperature, 150 ℃ and 250 ℃ to evaluate the residual bond strength of carbon fiber reinforcement polymer, CFRP after elevated temperature and deformed steel rebar of D10 and D13 were also evaluated after the high temperature heating for comparison. As a result of the experiment, the bond strength of the CFRP after 150 ℃ and 250 ℃ decreased by 9.94 % and 41 %, respectively. On the other hand, after thermal heating, both the steel rebar of D10 and D13 had a lower rate of reduction in bond strength than that of the CFRP. Also slip at the maximum bond strength also decreased after the heating for both the CFRP and the rebars. Through it, the correlation between the bond strength and the slip reduction due to thermal heating was confirmed and bond slip models were presented. Finally the experimental result was evaluated as relative bond strength to identify the residual bond performance of the CFRP and the rebar after the heating was confirmed by comparing with the existing test result of the bond strength after elevated temperature.

EFFECT OF CONTAMINANTS ON THE PUTTY-WASH BOND STRENGTH IN TWO-STEP RELINE TECHNIQUE USING VINYL POLYSILOXANE IMPRESSION MATERIALS (Vinyl Polysiloxane 인상재를 이용한 이회 인상법에서 contaminants가 putty-wash 결합력에 미치는 영향)

  • Kim, Mu-Hyon;Jeong, Chang-Mo;Jeon, Young-Chan;Hwang, Hie-Seong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.2
    • /
    • pp.266-276
    • /
    • 1996
  • Numerous factors are known to affect the accuracy of elastomeric impression materials. Factor often overlooked is the quality of the bond between putty and wash during corrective reline impression technique. The putty-wash bond strength must be strong enough to over-come the local stress at putty-wash interface. It is not always possible to avoid saliva contamination in making corrective wash impres-sion. And putty preliminary impression material con be used as a template for provisional restoration. Human saliva and the residual monomer of autopolymerizing acrylic resin are thought to affect the bond strength and the failure type. This study examined the effect of contaminants like human saliva, and residual resin monomer on the putty-wash bond strength and the effectiveness of treatment. 1. Of the tested three brands of Vinyl Polysiloxane impession meterial, Express Exhibited the greatest bond strength followed by Eamix and Perfect showed the lowest putty-wah bond strength. 2. Coating the putty substrates with human saliva did not produce decreased failure load in all the breands of Vinyl Polysiloxane impression meterail. 3. Of the three brands of VPS impression material that were exposed to methhylmethacry-late resin(Jet), only the putty-wash bond strength of the Perfect group diminished signifi-cantly. Moreover, all the specimens from group C of Perfect exhibited adhesive failure. 4. Exposing the substrates to ethylmethacrylate resin(SNAP. diminished the putty-wash bond strength significantly. With Perfect and Examix, failure occurred cohesively through the light-body, whereas with Express, failure occurred adhesive-cohesively. 5. Removing approximately 1mm thickness of the contaminated putty interface was the most effective treatment in countering the undesirable effect caused by residual resin monomer. The putty-wash bond strength of the groups that were treated with 1mm even putty reduction was not significantly different from those of control groups. With Perfect and Examix, cleaning the specimens with gauze soaked in 70% isopropyl alcohol increased the putty-wash bond strength, but was not as effective as 1mm even reduction of contaminated putty substrates. With Express, 70% isoproryl alcohol treatment exhibi0ted comparable putty-wash bond strength to that of control group.

  • PDF