• Title/Summary/Keyword: Residual Power

Search Result 724, Processing Time 0.04 seconds

Calculation of preliminary site-specific DCGLs for nuclear power plant decommissioning using hybrid scenarios

  • Seo, Hyung-Woo;Sohn, Wook
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1098-1108
    • /
    • 2019
  • Korea's first commercial nuclear power plant at Kori site was permanently shut down in 2017 and is currently in transition stage. Preparatory activities for decommissioning such as historical site assessment, characterization, and dismantling design are being actively carried out for successful D&D (Dismantling and Decontamination) at Kori site. The ultimate goal of decommissioning will be to ensure the safety of workers and residents that may arise during the decommissioning of nuclear facilities and, thereby finally returning the site to its original status in accordance with the release criteria. Upon completion of decommissioning, the resident's safety at a site released will be assessed from the evaluation of dose caused by radionuclides expected to be present or detected at the site. Although the U.S. commercial nuclear power plants with decommissioning experience use different site release criteria, most of them are 0.25 mSv/y. In Korea, both the unrestricted and restricted release criteria have been set to 0.1 mSv/y by the Nuclear Safety and Security Commission. However, since the dose is difficult to measure, measurable concentration guideline levels for residual radionuclides that result in dose equivalent to the site release criteria should be derived. For this derivation, site reuse scenario, selection of potential radionuclides, and systematic methodology should be developed in planning stage of Kori site decommissioning. In this paper, for calculation of a preliminary site-specific Derived Concentration Guideline Levels (DCGLs) for the Nuclear Power Plant site, a novel approach has been developed which can fully reflect practical reuse plans of the Kori site by taking into account multiple site reuse scenarios sequentially, thereby striking a remarkable distinction with conventional approaches which considers only a single site scenario.

Analysis and Measurement of Residual Stress of Al 7175 Ring Rolls after Quenching and stress Relieving (고강도 알루미늄 7175 합금 링롤재의 급냉 및 응력제거처리후 잔류응력 유한요소해석 및 측정)

  • 박성한;구송회;이방업;은일상
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.104-110
    • /
    • 1997
  • To predict the effect of ring expansion and ring compression on residual stress relief of Al 7175 ring rot]s, 2-D axisymmetric thermal analysis and elastoplastic analysis were performed. The residual stress distributions along the thickness of T73, T7351 and T7352 treated rings were measured using three step sectioning method. The measured results were compared to numerical ones for quenched and stress relieved rings. After quenching, calculated hoop and axial residual stresses were similar to measured ones for T73 treated rings. The residual stresses of T7351 and T7352 treated rings were decreased remarkably compared to T73 treated rings. The effect of axial residual stress relief was superior to that of hoop one, and also ring compression to ring expansion. It was concluded that ring compression is advantageous over ring expansion in view of stress relief effect and practicality, and vice versa in view of dimensional control and press power.

  • PDF

Effect of Finite Element Analysis Parameters on Weld Residual Stress of Dissimilar Metal Weld in Nuclear Reactor Piping Nozzles (유한요소 해석변수가 원자로 배관 노즐 이종금속용접부의 용접잔류응력에 미치는 영향)

  • Soh, Na-Hyun;Oh, Gyeong-Jin;Huh, Nam-Su;Lee, Sung-Ho;Park, Heung-Bae;Lee, Seung-Gun;Kim, Jong-Sung;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.8 no.1
    • /
    • pp.8-18
    • /
    • 2012
  • In early constructed nuclear power plants, Ni-based Alloys 82/182 had been widely used for dissimilar metal welds (DMW) as a weld filler metal. However, Alloys 82/182 have been proven to be susceptible to primary water stress corrosion cracking (PWSCC) in the nuclear primary water environment. The formation of crack due to PWSCC is also influenced by weld residual stresses. Thus, the accurate estimation of weld residual stresses of DMW is crucial to investigate the possibility of PWSCC and instability behaviors of crack due to PWSCC. In this context, the present paper investigates weld residual stresses of nuclear reactor piping nozzles based on 2-D axi-symmetric finite element analyses based on layer-based approach using maximum molten bead temperature. In particular, the effect of analysis parameters, i.e., a thickness of weld layer, an initial molten bead temperature, convection heat transfer coefficient, and geometric constraints on predicted weld residual stresses was investigated.

Performance Improvement of WDM Signals through Precompensation and Postcompensation in Dispersion Managed Optical Transmission Links with Artificial Distribution of Single Mode Fiber Length and RDPS (인위적인 단일 모드 광섬유 길이와 RDPS 분포를 갖는 분산 제어 광전송 링크에서 선치 보상과 후치 보상을 통한 WDM 신호의 성능 개선)

  • Lee, Seong-Real
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2293-2302
    • /
    • 2012
  • New optical transmission links technique for compensating of the distorted wavelength division multiplexed (WDM) signals due to group velocity dispersion (GVD) and self phase modulation (SPM) in single mode fiber (SMF) are proposed. The proposed optical links have optical phase conjugator (OPC) placed at nearby WDM transmitter or receiver and repeater spans with artificial distribution of SMF length and residual dispersion per span (RDPS). It is confirmed that optimal link configuration expanding effective launching power range and effective net residual dispersion (NRD) by improving system performance is that having OPC closely placed at WDM receiver and the gradually descended distribution of SMF length and RDPS of each repeater spans, related with the gradually increased optical link length. And, it is also confirmed that NRD is controlled by postcompensation in optimal optical link with OPC closely placed at WDM receiver.

A Residual Echo and Noise Reduction Scheme with Linear Prediction for Hands-Free Telephony (핸즈프리 전화기를 위한 선형 예측기를 이용한 잔여반향 및 잡음 제거 구조)

  • Hwang, Kyung-Rok;Son, Kyung-Sik;Kim, Hyun-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.454-460
    • /
    • 2009
  • In this paper, we propose a residual echo and noise reduction scheme by using linear predictor for hands-free telephony applications. The proposed scheme whitens residual echo by the linear prediction during the non double-talk. But whitened residual echo signal still has speech characteristics. In this scheme, the whitened residual echo signal is more whitened by using the power of the linear prediction error signal and the linear predicted signal. After whitening process, near-end speech and ambient noise is present during double-talk but white noise will appear during non double-talk situation. By linearly predicting again the combined signal of the near-end speech and the whitened signal, the ambient noise is removed. Through computer simulation, it is shown that the proposed method performs well at the side of AIC (acoustic interference cancellation).

A Comparative Study of Superhard TiN Coatings Deposited by DC and Inductively Coupled Plasma Magnetron Sputtering (DC 스퍼터법과 유도결합 플라즈마 마그네트론 스퍼터법으로 증착된 수퍼하드 TiN 코팅막의 물성 비교연구)

  • Chun, Sung-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.2
    • /
    • pp.55-60
    • /
    • 2013
  • Superhard TiN coatings were fabricated by DC and ICP (inductively coupled plasma) assisted magnetron sputtering techniques. The effect of ICP power, ranging from 0 to 300 W, on coating microstructure, preferred orientation mechanical properties were systematically investigated with HR-XRD, SEM, AFM and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of TiN coatings. With the increasing of ICP power, coating microstructure evolves from the columnar structure of DC process to a highly dense one. Grain sizes of TiN coatings were decreased from 12.6 nm to 8.7 nm with increase of ICP power. The maximum nanohardness of 67.6 GPa was obtained for the coatings deposited at ICP power of 300 W. Preferred orientation in TiN coatings also vary with ICP power, exerting an effective influence on film nanohardness.

Disinfection of E. coli Using Electro-UV Complex Process: Disinfection Characteristics and Optimization by the Design of Experiment Based on the Box-Behnken Technique (전기-UV 복합 공정을 이용한 E. coli 소독 : 실험계획법중 박스-벤켄법을 이용한 소독 특성 및 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.889-900
    • /
    • 2010
  • The experimental design and response surface methodology (RSM) have been applied to the investigation of the electro-UV complex process for the disinfection of E. coli in the water. The disinfection reactions of electro-UV process were mathematically described as a function of parameters power ($X_1$), NaCl dosage ($X_2$), initial pH ($X_3$) and disinfection time ($X_4$) being modeled by use of the Box-Behnken technique. The application of RSM using the Box-Behnken technique yielded the following regression equation, which is an empirical relationship between the residual E. coli number and test variables in actual variables: Ln (CFU) = 23.57 - 0.87 power - 1.87 NaCl dosage - 2.13 pH - 2.84 time - 0.09 power time - 0.07 NaCl dosage pH + 0.14 pH time + 0.03 $power^2$ + 0.47 NaCl $dosage^2$ + 0.20 $pH^2$+ 0.33 $time^2$. The model predictions agreed well with the experimentally observed result ($R^2$ = 0.9987). Graphical response surface and contour plots were used to locate the optimum point. The estimated ridge of maximum response and optimal conditions for the E. coli disinfection using canonical analysis was Ln 1.06 CFU (power, 15.40 W; NaCl dosage, 1.95 g/L, pH, 5.94 and time, 4.67 min). To confirm this optimum condition, the obtained number of the residual E. coli after three additional experiments were Ln 1.05, 1.10 and Ln 1.12. These values were within range of 0.62 (95% PI low)~1.50 (95% PI high), which indicated that conforming the reproducibility of the model.

Power based Routing Scheme for Ubiquitous Sensor Networks (유비쿼터스 센서 네트워크에서의 전력 기반 라우팅기법)

  • Won, Jongho;Park, Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.649-651
    • /
    • 2018
  • Since the ubiquitous sensor network is not connected to external power source and operated by its own battery, it is required to maximize the network life using the efficient energy utilization. In a conventional hop count based routing protocol, most sensor nodes are designed with a constant transmission power. In this paper, we propose a routing protocol that prolongs the network lifetime by balancing the power consumption among the nodes by controlling the transmit power according to the residual power of the nodes, and compared the performance of the proposed routing protocol through computer simulations.

  • PDF

Properties of VN Coatings Deposited by ICP Assisted Sputtering: Effect of ICP Power

  • Chun, Sung-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.38-42
    • /
    • 2017
  • Vanadium nitride (VN) coatings were deposited using inductively coupled plasma (ICP) assisted sputtering at different ICP powers. Microstructural, crystallographic and mechanical characterizations were performed by FE-SEM, AFM, XRD and nanoindentation. The results show that ICP has significant effects on coating's microstructure, structural and mechanical properties of VN coatings. With an increase in ICP power, coating microstructure evolved from a porous columnar structure to a highly dense one. Single- phase cubic (FCC) VN coatings with different preferential orientations and residual stresses were obtained as a function of ICP power. Average crystal grain sizes of single phase cubic (FCC) VN coatings were decreased from 10.1 nm to 4.0 nm with an increase in ICP power. The maximum hardness of 28.2 GPa was obtained for the coatings deposited at ICP power of 200 W. The smoothest surface morphology with Ra roughness of 1.7 nm was obtained in the VN coating sputtered at ICP power of 200 W.

System-Level Vulnerability Analysis for Commutation Failure Mitigation in Multi-infeed HVDC Systems

  • Yoon, Minhan;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1052-1059
    • /
    • 2018
  • This paper deals with commutation failure of the line-commutated converter high voltage direct current (LCC HVDC) system caused by a three phase fault in the ac power system. An analytic calculation method is proposed to estimate the maximum permissible voltage drop at the LCC HVDC station on various operating point and to assess the area of vulnerability for commutation failure (AOV-CF) in the power system based on the residual phase voltage equation. The concept is extended to multi-infeed HVDC power system as the area of severity for simultaneous commutation failure (AOS-CF). In addition, this paper presents the implementation of a shunt compensator applying to the proposed method. An analysis and simulation have been performed with the IEEE 57 bus sample power system and the Jeju island power system in Korea.