• Title/Summary/Keyword: Residual Nitrite

Search Result 84, Processing Time 0.024 seconds

Effect of Thyme and Rosemary on The Quality Characteristics, Shelf-life, and Residual Nitrite Content of Sausages During Cold Storage

  • Jin, Sang Keun;Choi, Jung Seok;Lee, Seung Jae;Lee, Seung Yun;Hur, Sun Jin
    • Food Science of Animal Resources
    • /
    • v.36 no.5
    • /
    • pp.656-664
    • /
    • 2016
  • The effects of thyme and rosemary on the quality characteristics of sausages during cold storage were investigated. Sausages were prepared with thyme and rosemary powder (1 and 2%) and stored for 6 weeks at 10℃. The pH was significantly decreased in sausages by addition of thyme and rosemary compared to that observed in the control before and after storage. At 4 weeks of storage, the residual nitrite content was decreased by thyme and rosemary compared to the control. Lightness (L*) and yellowness (b*) were increased during storage, whereas redness (a*) and whiteness (W) were decreased before and after storage by addition of thyme and rosemary. The amount of TPC and lactic acid bacteria was lower at the end of storage in sausage containing thyme and rosemary. The 2, 2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging capacity of sausages was increased by addition of thyme and rosemary compared to that in the control before and after storage. In particular, T2 (0.2% thyme addition) showed the highest DPPH radical scavenging capacity during storage. In a sensory evaluation, flavor and overall acceptability were lower in sausages containing thyme and rosemary than in the control. However, at the end of storage (6 wk), aroma, flavor and overall acceptability were not significantly different among the sausage samples.

Effect of Using Vegetable Powders as Nitrite/Nitrate Sources on the Physicochemical Characteristics of Cooked Pork Products

  • Jeong, Jong Youn;Bae, Su Min;Yoon, Jiye;Jeong, Da Hun;Gwak, Seung Hwa
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.831-843
    • /
    • 2020
  • This study investigated the potential for using vegetable powders as a natural replacement for sodium nitrite and their effects on the physicochemical characteristics of alternatively cured pork products. We analyzed pork products subjected to four treatments: control (0.015% sodium nitrite), Chinese cabbabe powder (CCP) treatment (0.4% Chinese cabbage powder), radish powder (RP) treatment (0.4% radish powder), and spinach powder (SP) treatment (0.4% spinach powder). Among the vegetable powders prepared in this study, SP had the highest (p<0.05) nitrate content, while CCP had the lowest (p<0.05). The cooking yields from these treatments were not significantly different from each other. However, the products with vegetable powders had higher (p<0.05) pH and thiobarbituric acid reactive substances values than the control. Pork products with vegetable powders also showed lower CIE L values and higher CIE b values than the nitrite-added control. RP treatment had similar (p>0.05) CIE a values to the control, while SP treatment had the lowest (p<0.05) CIE a values. The residual nitrite content was lower (p<0.05) in the vegetable powder added pork products than in the control, although nitrosyl hemochrome and total pigment contents in the CCP and RP treatments were similar (p>0.05) to those in the control. The control, CCP, and RP treatments showed curing efficiencies greater than 80%, indicating that CCP and RP would be promising potential replacements for sodium nitrite. The results of this study suggest that RP may be a suitable natural replacement for sodium nitrite to produce alternatively cured meat products, compared to other leafy vegetable powders.

Effects of natural nitrite source from Swiss chard on quality characteristics of cured pork loin

  • Kim, Tae-Kyung;Hwang, Ko-Eun;Song, Dong-Heon;Ham, Youn-Kyung;Kim, Young-Boong;Paik, Hyun-Dong;Choi, Yun-Sang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1933-1941
    • /
    • 2019
  • Objective: This study was conducted to evaluate quality characteristics of cured pork loin with natural nitrite source from Swiss chard. Methods: Pork loin was cured in brine and the ratio of water and fermented Swiss chard (FSC) solution in the brine was changed by 4:0 (control), 3:1 (T1), 1:1 (T2), 1:3 (T3), 0:4 (T4), and pickled samples with 0.012% sodium nitrite (PC, positive control) and nitrite free brine (NC, negative control) were considered as the control. Results: The pH values of cured pork loins with FSC were decreased with increasing addition level of FSC. Cooking loss was not significantly different among all treatments. T4 had the lowest value in moisture content and lightness value and the highest value in curing efficiency. The redness value of T4 was not significantly different from that of PC in raw. After cooking, however, it was higher than that of PC. The yellowness value of cured pork loin added with FSC was increased with increasing level of FSC. Volatile basic nitrogen content of cured pork loin added with FSC was higher than PC and NC. Thiobarbituric acid reactive substance value of cured pork loin added with FSC was decreased with increasing FSC level. Residual nitrite level and shear force were increased with increasing FSC level. In the sensory evaluation, sensory score for flavor, off-flavor, chewiness, juiciness, and overall acceptability were not significantly different among all treatments. However, sensory score for color was increased when the concentration of FSC added to pork loin was increased. Conclusion: The FSC solution had a positive effect on redness and lipid oxidation. As shown by the results in protein deterioration and sensory, Swiss chard can replace sodium nitrite as natural curing agent.

Effects of Dongchimi Powder as a Natural Nitrite Source on Quality Properties of Emulsion-Type Sausages

  • Su Min Bae;Da Hun Jeong;Seung Hwa Gwak;Seonyeong Kang;Jong Youn Jeong
    • Food Science of Animal Resources
    • /
    • v.43 no.3
    • /
    • pp.502-511
    • /
    • 2023
  • The use of nitrite as a conventional curing agent is decreasing because of the negative consumer perception of synthetic compounds in foods. Therefore, this study was conducted to investigate the efficacy of dongchimi as an alternative to synthetic nitrite and its effect on the qualitative properties of emulsion-type sausages. Under all tested fermentation conditions, both nitrite and nitrate contents were the highest when dongchimi was fermented at 0℃ for 1 wk. The fermented dongchimi was powdered and added to the sausages. Emulsion-type sausages were prepared with 0.25% (treatment 1), 0.35% (treatment 2), 0.45% (treatment 3), or 0.55% (treatment 4) dongchimi powder, with 0.01% sodium nitrite-treated (control 1) and 0.40% celery powder-treated (control 2) sausages as controls. There were not different (p>0.05) in the pH, cooking yield, CIE L*, and CIE a* between the control 1 and treatments 2, 3, and 4. CIE b* was significantly higher (p<0.05) in the control 2 and lower (p<0.05) in the control 1 than that in the other groups. Treatment 4 and control 1 had similar contents of residual nitrite, nitrosyl hemochrome, and total pigment. Additionally, treatment 4 exhibited a significantly better (p<0.05) curing efficiency than the control 1. However, naturally cured sausages showed higher (p<0.05) lipid oxidation than the control 1. This study suggests that the use of more than 0.35% dongchimi powder could replace sodium nitrite or celery powder as curing agents for emulsion-type sausages.

Effect of Addition of Mugwort Powder and Carcass Grade on the Storage Stability of Pork Ham (쑥 분말 첨가와 원료육 등급이 돼지고기 햄의 저장성에 미치는 영향)

  • 정인철;강세주;김영길;현재석;문윤희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.201-206
    • /
    • 2004
  • This study was carried out to investigate the effect of addition mugwort podwer and carcass grade on the shelf life of pork ham. Pork ham was prepared by four type such as grade B pork ham ( $B_{o}$ ), grade B pork ham containing mugwort powder ( $B_{+}$), grade E pork ham ( $E_{o}$ ) and grade E pork ham containing mugwort powder ( $E_{+}$). The surface color, pH, residual nitrite, VBN (volatile basic nitrogen), TBARS (2-thiobarbituric acid reactive substances) and total bacterial counts of the samples were determined during storage for 8 weeks at 4$^{\circ}C$. The $L^{*}$ value of $B_{o}$ and $B_{+}$ ham showed higher at the latter period of 8 weeks, that of $E_{o}$ ham was the highest on at the storage of 2nd week and that of $E_{+}$ ham was not different during 8 weeks storage. The $L^{*}$ value of B grade ham was higher than that of E grade ham and the $a^{*}$ value of E grade ham was higher than that of B grade ham. The pH of all ham decreased during storage, but increased from 8 weeks. The residual nitrite of all ham highly decreased until storage for 2 weeks, the addition of mugwort powder was affected in the reduction of residual nitrite of pork ham. The VBN contents were 6.90∼7.90 mg% in the early period of storage, was 14.07∼14.83 mg% on the storage of 8th week. The TBARS of pork ham were increased gradually during storage and pork ham containing mugwort powder showed lower value than pork ham non added mugwort powder during 4th and 6th weeks storage. The total bacterial counts of pork ham were increased gradually during storage and the addition of mugwort powder was not effective.ive.ctive.ive.

Effects of Green Tea Extracts on Quality Characteristics and Reduced Nitrite Content of Emulsion Type Sausage during Storage (녹차 추출물의 첨가가 저장 중 유화형 소시지의 품질 특성 및 아질산염 감소에 미치는 영향)

  • Yang, Han-Sul;Jeong, Jin-Yeon;Lee, Jeong-Ill;Yun, I-Ran;Joo, Seon-Tea;Park, Gu-Boo
    • Food Science of Animal Resources
    • /
    • v.26 no.4
    • /
    • pp.454-463
    • /
    • 2006
  • This study was carried out to investigate the effects of addition of green tea extract material with or without nitrite (0.02 g) on the quality characteristics and reduced nitrite content of emulsion-type sausages during 4 weeks of storage at $4^{\circ}C$. The treatments were; non-added nitrite and green tea extract (0, added nitrite and non-added green tea extract (T1), added nitrite and 0.2% green tea extract (T2), added nitrite and 0.5% green tea extract (T3), and added nitrite and 1% green tea extract (T4). The lightness $(L^*)$ of sausage containing nitrite and green tea extract together were significantly lower than control and T1 (p<0.05). The redness $(a^*)$ of sausage containing only nitrite (T1) and, nitrite and green tea extract at 1% (T4) were significantly higher than control (p<0.05). The total expressible fluid (%) of sausage containing nitrite and green tea extract were significantly lower than control (p<0.05). Cohesiveness of sausage containing green tea extract were significantly lower than control (p<0.05) at 2 and 4 weeks storage period. Addition of nitrite and green tea extract decreased the TBARS values (p<0.05). It was also found that natural extract (green tea) treatments decreased TBARS formation more than only added nitrite (Tl) (p<0.05). The changes of total plate count and coliform plate count were increased during storage time. The total plate count of T1 was higher at 4 weeks of storage period, while the coliform plate count was higher in control at 2 and 4 weeks of storage period compare to other treatments. The residual nitrite content was decreased during storage time in all treatment except control and the effectiveness of decreasing ability was higher with increasing green tea extract.

Effects of Pre-Converted Nitrite from Red Beet and Ascorbic Acid on Quality Characteristics in Meat Emulsions

  • Choi, Yun-Sang;Kim, Tae-Kyung;Jeon, Ki-Hong;Park, Jong-Dae;Kim, Hyun-Wook;Hwang, Ko-Eun;Kim, Young-Boong
    • Food Science of Animal Resources
    • /
    • v.37 no.2
    • /
    • pp.288-296
    • /
    • 2017
  • We investigated the effects of fermented red beet extract and ascorbic acid on color development in meat emulsions. The pH of meat emulsions containing red beet extract decreased with an increase in the amount of extract added. The redness of the treated meat emulsions was higher than that of the control with no added nitrite or fermented red beet extract (p< 0.05), though the redness of the meat emulsions treated with fermented red beet extract only was lower than in that treated with both fermented red beet extract and ascorbic acid (p<0.05). The highest VBN, TBARS, and total viable count values were observed in the control, and these values in the meat emulsions treated with fermented red beet extract were higher than in that treated with both fermented red beet extract and ascorbic acid (p<0.05). E. coli and coliform bacteria were not found in any of the meat emulsions tested. Treatment T2, containing nitrite and ascorbic acid, had the highest overall acceptability score (p<0.05); however, there was no significant difference between the T2 treatment and the T6 treatment, which contained 10% pre-converted nitrite from red beet extract and 0.05% ascorbic acid (p>0.05). The residual nitrite content of the meat emulsions treated with ascorbic acid was lower than in those treated without ascorbic acid (p<0.05). Thus, the combination of fermented red beet extract and ascorbic acid could be a viable alternative to synthetic nitrite for the stability of color development in meat emulsions.

Antioxidant, Antimicrobial, and Curing Potentials of Micronized Celery Powders added to Pork Sausages

  • Ramachandraiah, Karna;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.41 no.1
    • /
    • pp.110-121
    • /
    • 2021
  • Meat industries utilize plant material such as celery in cured meat products. Extraction of valuable bioactive compounds, nitrates and nitrites often involves processes that increase cost or lack sustainability. Thus, this study investigated the effect of ball-milled celery powders (CP) on the physicochemical, antioxidant, and antimicrobial properties along with curing efficiency in comminuted meat product. Pork sausages loaded with CPs with different average particle sizes: 265 ㎛ (T1), 68 ㎛ (T2) and 7 ㎛ (T3) were compared to those added without and with sodium nitrite (150 ppm). The a⁎ values were increased for sausages with larger particle size. The L⁎ values decreased for all CPs. Residual nitrite for all particle sizes increased in the earlier stages and decreased at the end of storage period. The curing efficiency also increased for larger size particles with an increase until day 9 followed by a gradual decrease. Superfine CP had a tendency to improve the antioxidant activities. The antimicrobial activity of CPs was not comparable with nitrite added sausages. The textural parameters remained unaffected by particle size. Thus, instead of extracts or juices, micronized CPs could be used to improve the antioxidant activities and curing efficiency of label friendly reformulated meat products.

Effect of Sodium Nitrate and Nitrate Reducing Bacteria on In vitro Methane Production and Fermentation with Buffalo Rumen Liquor

  • Sakthivel, Pillanatham Civalingam;Kamra, Devki Nandan;Agarwal, Neeta;Chaudhary, Chandra
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.812-817
    • /
    • 2012
  • Nitrate can serve as a terminal electron acceptor in place of carbon dioxide and inhibit methane emission in the rumen and nitrate reducing bacteria might help enhance the reduction of nitrate/nitrite, which depends on the type of feed offered to animals. In this study the effects of three levels of sodium nitrate (0, 5, 10 mM) on fermentation of three diets varying in their wheat straw to concentrate ratio (700:300, low concentrate, LC; 500:500, medium concentrate, MC and 300:700, high concentrate, HC diet) were investigated in vitro using buffalo rumen liquor as inoculum. Nitrate reducing bacteria, isolated from the rumen of buffalo were tested as a probiotic to study if it could help in enhancing methane inhibition in vitro. Inclusion of sodium nitrate at 5 or 10 mM reduced (p<0.01) methane production (9.56, 7.93 vs. 21.76 ml/g DM; 12.20, 10.42 vs. 25.76 ml/g DM; 15.49, 12.33 vs. 26.86 ml/g DM) in LC, MC and HC diets, respectively. Inclusion of nitrate at both 5 and 10 mM also reduced (p<0.01) gas production in all the diets, but in vitro true digestibility (IVTD) of feed reduced (p<0.05) only in LC and MC diets. In the medium at 10 mM sodium nitrate level, there was 0.76 to 1.18 mM of residual nitrate and nitrite (p<0.01) also accumulated. In an attempt to eliminate residual nitrate and nitrite in the medium, the nitrate reducing bacteria were isolated from buffalo adapted to nitrate feeding and introduced individually (3 ml containing 1.2 to $2.3{\times}10^6$ cfu/ml) into in vitro incubations containing the MC diet with 10 mM sodium nitrate. Addition of live culture of NRBB 57 resulted in complete removal of nitrate and nitrite from the medium with a further reduction in methane and no effect on IVTD compared to the control treatments containing nitrate with autoclaved cultures or nitrate without any culture. The data revealed that nitrate reducing bacteria can be used as probiotic to prevent the accumulation of nitrite when sodium nitrate is used to reduce in vitro methane emissions.

Effect of Fermented Spinach as Sources of Pre-Converted Nitrite on Color Development of Cured Pork Loin

  • Kim, Tae-Kyung;Kim, Young-Boong;Jeon, Ki-Hong;Park, Jong-Dae;Sung, Jung-Min;Choi, Hyun-Wook;Hwang, Ko-Eun;Choi, Yun-Sang
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.105-113
    • /
    • 2017
  • The effect of fermented spinach extracts on color development in cured meats was investigated in this study. The pH values of raw cured meats without addition of fermented spinach extract or nitrite (negative control) were higher (p<0.05) than those added with fermented spinach extract. The pH values of raw and cooked cured meats in treatment groups were decreased with increasing addition levels of fermented spinach extract. The lightness and yellowness values of raw cured meats formulated with fermented spinach extract were higher (p<0.05) than those of the control groups (both positive and negative controls). The redness values of cooked cured meats were increased with increasing fermented spinach extract levels, whereas the yellowness values of cooked cured meats were decreased with increasing levels of fermented spinach extract. The lowest volatile basic nitrogen (VBN) and thiobarbituric acid reactive substances (TBARS) values were observed in the positive control group with addition of nitrite. TBARS values of cured meats added with fermented spinach extract were decreased with increasing levels of fermented spinach extract and VBN values of curing meat with 30% fermented spinach extract was lower than the other treatments. Total viable bacterial counts in cured meats added with fermented spinach extract ranged from 0.34-1.01 Log CFU/g. E. coli and coliform bacteria were not observed in any of the cured meats treated with fermented spinach extracts or nitrite. Residual nitrite contents in treatment groups were increased with increasing levels of fermented spinach extract added. These results demonstrated that fermented spinach could be added to meat products to improve own curing characteristics.