• Title/Summary/Keyword: Residual Calibration

Search Result 91, Processing Time 0.029 seconds

Welding Residual Stress Measurement by Barkhausen Noise Method (Barkhausen noise를 이용한 용접 잔류응력 측정)

  • Lee, S.S.;Ahn, B.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.1
    • /
    • pp.91-95
    • /
    • 1990
  • Welding residual stress was measured by Barkhausen noise method. The calibration experiment was done for the quantitative analysis. The specimen for the calibration experiment must has the same thermo-mechanical history as the actual material to be tested. The Barkhausen noise were analysed by the pulse-height distribution. The results show that the distribution and magnitude of welding residual stress from Barkhausen noise method are in good agreement with those from blind hole method.

  • PDF

Development of a Residual Gas Analyzer Calibration System (잔류기체 분석기 교정장치 개발)

  • Hong, S.S.;Lim, I.T.;Kim, J.T.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.2
    • /
    • pp.91-98
    • /
    • 2007
  • The Korea Research Institute of Standards and Science (KRISS) has developed a residual gas analyzer (RGA) calibration system and measured gas sensitivities for two different types QMSs using nitrogen, argon, and helium. Different gas sensitivities were identified according to mass and pressure, so it was revealed that the gas sensitivity correction is necessary for proper use of mass spectrometers.

Calibration and a Plane of Incidence Fixed Ellipsometer (Ellipsometry에서의 Calibration 및 입사면 고정형 Ellipsometer)

  • 경재선;오혜근;안일신;김옥경
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.23-26
    • /
    • 2003
  • The general users find difficulties in using ellipsometers. Thus, the object of this study is to construct an ellipsometer with simple operation principle. We developed an ellipsometer which does not require alignment and calibration before measuring sample. A basis structure model after rotating a compensator spectroscopic ellipsometry, the fixed incidence angle at $70^{\circ}$. This ellipsometer does not demand calibration, because the plane of incidence is not changed due to the novel sample holder structure. The results for various standard samples were compared with those from conventional RCSE to test the performance of this instrument. Also repeated measurements were performed to test the precision of the calibration coefficient in a plane of incidence fixed.

  • PDF

Post-Earthquake Damage Evaluation for R/C Buildings Based on Residual Seismic Capacity (지진피해를 받은 철근콘크리트 건물의 지진피해도 판정)

  • Lee Kang Seok;Kang Dae-Eon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.109-112
    • /
    • 2005
  • In this paper described is the basic concept of the Guideline for Post-earthquake Damage Assessment of RC buildings, revised in 2001, in Japan. This paper discusses the damage rating procedures based on the residual seismic capacity index R, the ratio of residual seismic capacity to the original capacity, that is consistent with the Japanese Standard for Seismic Evaluation of Existing RC Buildings, and their validity through calibration with observed damage due to the 1995 Hyogoken-Nambu (Kobe) earthquake. Good agreement between the residual seismic capacity ratio and damage levels was observed.

  • PDF

In Orbit Radiometric Calibration Tests of COMS MI Infrared Channels

  • Jin, Kyoung-Wook;Seo, Seok-Bae
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.369-377
    • /
    • 2011
  • Since well-calibrated satellite data is critical for their applications, calibration and validation of COMS science data was one of the key activities during the IOT. COMS MI radiometric calibration process was divided into two phases according to the out-gassing of the sensor: calibrations of the visible (VI) and infrared (IR) channels. Different from the VIS calibration, the calibration steps for the IR channels followed additional processes to secure their radiometric performances. Primary calibration steps of the IR were scan mirror emissivity correction, midnight effect compensation, slope averaging and 1/f noise compensation after a nominal calibration. First, the scan mirror emissivity correction was conducted to compensate the variability of the scan mirror emissivity driven by the coating material on the scan mirror. Second, the midnight effect correction was performed to remove unreasonable high spikes of the slope values caused by the excessive radiative sources during the local midnight. After these steps, the residual (difference between the previous slope and the given slope) was filtered by a smoothing routine to eliminate the remnant random noises. The 1/f noise compensation was also carried out to filter out the lower frequency noises caused from the electronics in the Imager. With through calibration processes during the entire IOT period, the calibrated IR data showed excellent performances.

System calibration method for Silicon wafer warpage measurement (실리콘 웨이퍼 휨형상 측정 정밀도 향상을 위한 시스템변수 보정법)

  • Kim, ByoungChang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.139-144
    • /
    • 2014
  • As a result of a mismatch of the residual stress between both sides of the silicon wafer, which warps and distorts during the patterning process. The accuracy of the warpage measurement is related to the calibration. A CCD camera was used for the calibration. Performing optimization of the error function constructed with phase values measured at each pixel on the CCD camera, the coordinates of each light source can be precisely determined. Measurement results after calibration was performed to determine the warpage of the silicon wafer demonstrate that the maximum discrepancy is $5.6{\mu}m$ with a standard deviation of $1.5{\mu}m$ in comparison with the test results obtained by using a Form TalySurf instrument.

Headspace Analysis for Residual Hexane in Vegetable Oil

  • Oh, Chang-Hwan;Kwon, Yong-Kwan;Jang, Young-Mi;Lee, Dal-Su;Park, Jong-Sei
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.456-460
    • /
    • 2005
  • To enforce the maximum residue limit for residual hexane (0.005 g/kg) in commercially available Korean vegetable oil, convenient and accurate quantification methods were investigated. Using dual surrogate standards, pentane and heptane were dissolved in ethanol, and then added to hexane-tree sunflower oil for setting up the calibration curve. Gas Chromatograph-Flame Ionization Detector with a porous layer open tubular column, indicated good chromatographic separation of hexane from other inhibiting matrix components. The lowest calibration level was $0.5\;{\mu}g/g$, not exceeding a relative standard deviation of 10% (RSD%), and 1.0\;{\mu}g/g$ not exceeding a deviation of 22% RSD% using heptane as an internal standard for the Static headspace analysis by using a headspace auto-sampler and manual injection, respectively. The residual hexane was detected in nine of the samples among 87 vegetable oil samples purchased on the local market.

A measurement technique for residual thickness of nano-imprinted polymer film using nano-indentation. (나노인덴테이션을 이용한 나노 임프린트된 폴리머 박막의 잔류두께 측정기법)

  • Lee, H.J.;Ko, S.G.;Kim, J.H.;Hur, S.;Lee, E.S.;Jeong, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1921-1926
    • /
    • 2003
  • Nano-imprint technology has been vigorously studied by many researchers for it is one of the most promising technologies for manufacturing the pattern with its critical dimension below 100nm. In the nano-imprint technology, nano patterns are transferred on a polymer film and the transferred patterns are used as an etch mask to define the designed patterns on a substrate or a metal layer. To this end, it is important to keep the residual thickness of the imprinted polymer film uniform. In this study, a novel measurement technique to measure the residual thickness of films is proposed based on nanoindentation theory. This technique has advantages of saving time and measuring the residual thickness of highly-localized portions in comparison with other techniques, but has limitation of requiring calibration process.

  • PDF

A Study for Measurements of In-Cylinder Residual Gas Fraction using Fast Response FID in an SI Engine (스파크점화기관에서 고속응답 FID를 이용한 실린더내 잔류가스량 측정에 관한 연구)

  • 송해박;조한승;이종화;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.80-89
    • /
    • 1998
  • The residual gas in an spark-ignition engine is one of important factors on emissions and performance such as combustion stability. With high residual gas fractions, flame speed and maximum combustion temperature are decreased and these are deeply related with combustion stability especially at idle and NOx emission at relatively high engine load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating parameters. In the present study, the quantitative measurement technique of residual gas fraction was studied by using Fast Response Flame Ionization Detector(FRFID). The measuring technique and model for estimation of residual gas fraction were reported in this paper. By the assuming that the raw signal from FRFID saturates with the same slope for firing and misfiring cycle, in-cylinder hydrocarbon(HC) concentration can be estimated. Residual gas fraction can be obtained from the in-cylinder HC concentration measured at firing and motoring condition. The developed measurement and calibration procedure were applied to the limited engine operating and design condition such as intake manifold pressure and valve overlap. The results show relevant trends by comparing those from previous studies.

  • PDF

Calibration Slope Adjustment for De-Striping KOMPSAT-1 EOC Images

  • Kang, C.H.;Park, D.J.;Ahn, S.I.;Koo, I.H.;Hyun, D.H.;Yang, H.M.;Kim, D.S.;Keum, J.H.;Choi, H.J.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1406-1408
    • /
    • 2003
  • KOMPSAT-1 (KOrea Multi-Purpose SATellite ? 1) EOC (Electro Optic Camera) raw images are radiometrically corrected on ground based on the characteristics of EOC. They consist of each CCD (Charge?Coupled Device) pixel’s calibration slope which was measured on ground, electrical gains which are applied to amplify for increasing output pixel counts. Currently, radio-metrically corrected EOC images with calibration slope have still shown defective features by residual stripes. So, it should be compensated by adjusting the calibration slope. In this paper, the adjustment of current calibration slope for de-striping EOC images is addressed and test results are shown.

  • PDF