• Title/Summary/Keyword: Residual Analysis

Search Result 3,224, Processing Time 0.031 seconds

Autofrettage Analysis of Pipe Bend using Finite Element Method (유한요소법을 이용한 곡관의 자긴가공 해석)

  • Park, C.J.;Koh, S.K.;Na, E.G.;Baek, T.H.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.637-642
    • /
    • 2008
  • Autofrettage analysis of a bend in the fuel injcetion pipe has been performed to investigate the distribution of residual stresses due to pipe bending and autofrettage processes. The pipe bending was simulated by metal forming analysis using finite element method, and residual stress distribution after bending was found. Autofrettage following the pipe bending was performed by applying the hydrostatic internal pressures of 603 MPa, 535 MPa, 500 MPa on the pipe bend, corresponding to theoretical 26 %, 14 %, 9 % overstrain levels, respectively. Residual stress distributions due to bending and autofrettage were evaluated.

  • PDF

Investigation of Evaluation Method for Bus Occupant Safety (버스의 승객안전도 평가방법 연구)

  • Shin, Jaeho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.54-60
    • /
    • 2020
  • In a previous study, an investigation of occupant behaviors and injuries (to the head and chest) was performed during vehicle impact loading cases in order to ensure the safety of wheelchair passengers on a bus. The computational results showed overall safety tolerances of wheelchair occupants under different accident configurations. The bus crashworthiness is described as the capability of a bus to protect occupants during rollover loadings. The residual space containing occupants should be undamaged without any intrusions. However it is necessary to evaluate the residual space according to the bus occupant kinematic analysis under the rollover crash simulation. This study focuses on the evaluation of occupant behaviors during rollover loading cases in order to ensure the safety of bus passengers sitting in general seats and wheelchairs and evaluates the residual space of the bus by analyzing the bus occupant kinematics.

Analysis of cavity expansion and contraction in unsaturated residual soils

  • Lukosea, Alpha;Thiyyakkandi, Sudheesh
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.405-419
    • /
    • 2022
  • Cavity expansion and contraction solutions for cylindrical and spherical cavities in unsaturated residual soils are presented in this paper. Varying soil state in the plastic zone is accounted by a numerical approach, wherein an element-by-element discretization of the plastic zone of both expanding and contracting cavities is carried out. Unlike existing methods utilizing self-similarity technique, the solution procedure enables the prediction of entire soil-state at any stage of expansion and subsequent contraction. It is also applicable for both cavity creation and expansion problems. The approach adopts constant contribution of suction to effective stress (constant Xs drainage condition) for analysis. The analysis procedure is validated by interpreting the previously reported pressuremeter test results in lateritic residual soil. The typical cavity expansion and contraction characteristics of unsaturated Indian lateritic soil were then examined using this solution procedure. The effect of initial soil-state on cavity limit pressure, plastic radius, reverse yield pressure, and reverse plastic radius are also presented.

Facial Expression Recognition Method Based on Residual Masking Reconstruction Network

  • Jianing Shen;Hongmei Li
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.323-333
    • /
    • 2023
  • Facial expression recognition can aid in the development of fatigue driving detection, teaching quality evaluation, and other fields. In this study, a facial expression recognition method was proposed with a residual masking reconstruction network as its backbone to achieve more efficient expression recognition and classification. The residual layer was used to acquire and capture the information features of the input image, and the masking layer was used for the weight coefficients corresponding to different information features to achieve accurate and effective image analysis for images of different sizes. To further improve the performance of expression analysis, the loss function of the model is optimized from two aspects, feature dimension and data dimension, to enhance the accurate mapping relationship between facial features and emotional labels. The simulation results show that the ROC of the proposed method was maintained above 0.9995, which can accurately distinguish different expressions. The precision was 75.98%, indicating excellent performance of the facial expression recognition model.

FINITE ELEMENT ANALYSIS AND MEASUREMENT ON THE RELEASE OF RESIDUAL STRESS AND NON-LINEAR BEHAVIOR IN WELDMENT BY MECHANICAL LOADING(I) -FINITE ELEMENT ANALYSIS-

  • Jang, Kyoung-Bok;Kim, Jung-Hyun;Cho, Sang-Myoung
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.378-383
    • /
    • 2002
  • In previous study, the decrease and recovery of total stiffness in welded structure was discussed on the basis of experimental examination through tensile loading and unloading test of welded specimen. The recovery of structure stiffness was caused by the release of welding residual stress through mechanical loading. In this study, analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result. Thermal elasto-plastic analysis for welding process was performed by non-coupled analysis. Analysis results of welding process were transfer to elasto-plastic model for tensile loading & unloading by restart technique. In elasto-plastic analysis model for mechanical loading & unloading, hardening appearance of weld metal was considered by rezoning technique and tying technique was used for JIG condition of test machine.

  • PDF

Finite Element Analysis and Measurement on the Release of Residual Stress and Non-linear Behavior in Weldment by Mechanical Loading(I) -Finite Element Analysis-

  • Jang, K.B.;Kim, J.H.;Cho, S.M.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.29-32
    • /
    • 2002
  • In previous study, the decrease and recovery of total stiffness in welded structure was discussed on the basis of experimental examination through tensile loading and unloading test of welded specimen. The recovery of structure stiffness was caused by the release of welding residual stress through mechanical loading. In this study, analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result. Thermal elasto-plastic analysis for welding process was performed by non- coupled analysis. Analysis results of welding process were transfer to elasto-plastic model for tensile loading & unloading by restart technique. In elasto-plastic analysis model for mechanical loading & unloading, hardening appearance of weld metal was considered by rezoning technique and tying technique was used for JIG condition of test machine.

  • PDF

A Study on the Evaluation of Transverse Residual Stress at the Multi-pass FCA Butt Weldment using FEA (유한요소해석을 이용한 다층 FCA 맞대기 용접부의 횡 방향 잔류응력 평가에 관한 연구)

  • Shin, Sang-Beom;Lee, Dong-Ju;Park, Dong-Hwan
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.26-32
    • /
    • 2010
  • The purpose of this study is to evaluate the residual stresses at the multi-pass FCA weldment using the finite element analysis (FEA). In order to do it, an H-type specimen was selected as a test specimen. The variable used was in-plane restraint intensity. The temperature distribution at the multi-pass FCA butt weldment was evaluated in accordance with the relevant guidance recommended by the KWJS. The effective conductivity for the weld metal corresponding to each welding pass was introduced to control the maximum temperature below the vaporization temperature of weld metal. The heat flux caused by welding arc was assumed to be applied to the weld metal corresponding to welding pass. With heat transfer analysis results, the distribution of transverse residual stresses was evaluated using the thermo-mechanical analysis and compared with the measured results by XRD and uniaxial strain gage. In thermo-mechanical analysis, the plastic strain resetting at the temperature above melting temperature of $1450^{\circ}C$ was considered and the weld metal and base metal was assumed to be bilinear kinematics hardening continuum. According to the comparison between FEA and experiment, transverse residual stresses at the multi-pass FCA butt weldment obtained by FEA had a good agreement with the measured results, regardless of in-plane rigidity. Based on the results, it was concluded that thermo-mechanical FE analysis based on temperature distribution calculated in accordance with the KWJS’s guidance could be used as a tool to predict the distribution of residual stress of the multi-pass FCA butt weldment.

Relations between Input Parameters and Residual Deformation in Line Heating process using Finite Element Analysis and Multi-Variate Analysis (유한요소해석과 다변수해석에 의한 선상가열 변형관계식)

  • Jang-Hyun Lee;Jong-Gye Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.69-80
    • /
    • 2002
  • Sequential process of roll-bending and line heating has been used to deform the curved hull-plates in shipyards. A growing interest for the mechanization or automation of the line heating process has been noted. Relations between heating conditions and residual deformations are important components needed for the mechanization. The residual deformations are investigated by using a thermal elastic-plastic analysis based on the finite element analysis(FEA). Several experiments are also performed to examine the validity of the results of FEA. The input parameters of line heating are suggested by dimensional analysis of line heating. The dimensional analysis can extract the primary input-parameters of line heating. The relations between the heating conditions and the residual deformations are set up by multi-variate analysis and multiple-regression method. This study suggests a method for the relation between the heating conditions and the deformations lying under the line heating.

A Quantitative Estimation of Welding Residual Stress Relaxation for Fatigue Strength Analysis (피로강도해석을 위한 용접잔류응력 이완의 정량적 평가)

  • Han, Seung-Ho;Lee, Tak-Kee;Shin, Byung-Chun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2018-2025
    • /
    • 2002
  • It is well known that the strength and the fatigue life of welded steel components are affected extensively by welding residual stresses distributed around their weldments under not only monotonic but also cyclic loads. The externally applied loads are to be superimposed with the welding residual stresses, so that unexpected deformations and failures of the components might occur. These residual stresses are not kept constant, but relaxed or redistributed during in service. Under monotonic loads the relaxation takes place when the sum of external and welding residual stress exceeds locally the yield stress of material used. By the way, it is shown that under cyclic loads the welding residual stress is considerably relieved by the first or the early cycles of loads, and then gradually relaxed with increasing loading cycles. Although many investigations in this field have been carried out, the phenomenon and mechanism of the stress relaxation are still not clear, and there are few comprehensive models to predict amount of relaxed welding residual stress. In this study, the characteristics of the welding residual stress relaxation under monotonic and cyclic loads were investigated, and a model to predict quantitatively amount of welding residual stress relaxation was proposed.

Residual Stresses Analysis of Ceramic Coating Materials (세라믹코팅재의 잔류응력 해석)

  • Han, Ji-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.8-11
    • /
    • 2008
  • In the present work, the measurement method of residual stresses in thermal barrier coatings(TBCs) which are received the thermal shock is performed numerically. For this, the internal residual stresses are predicted by commercial FEM software ABAQUS because the hole drilling strain gage method measures residual stresses only near the surface of a material. As the results of this study, the residual stresses are linearly increased when the surface temperatures are over $1,200^{\circ}C$. It is also found that the values of residual stress are increased as the coating thickness is thin.