Browse > Article
http://dx.doi.org/10.12989/gae.2022.28.4.405

Analysis of cavity expansion and contraction in unsaturated residual soils  

Lukosea, Alpha (Department of Civil Engineering, Indian Institute of Technology)
Thiyyakkandi, Sudheesh (Department of Civil Engineering, Indian Institute of Technology)
Publication Information
Geomechanics and Engineering / v.28, no.4, 2022 , pp. 405-419 More about this Journal
Abstract
Cavity expansion and contraction solutions for cylindrical and spherical cavities in unsaturated residual soils are presented in this paper. Varying soil state in the plastic zone is accounted by a numerical approach, wherein an element-by-element discretization of the plastic zone of both expanding and contracting cavities is carried out. Unlike existing methods utilizing self-similarity technique, the solution procedure enables the prediction of entire soil-state at any stage of expansion and subsequent contraction. It is also applicable for both cavity creation and expansion problems. The approach adopts constant contribution of suction to effective stress (constant Xs drainage condition) for analysis. The analysis procedure is validated by interpreting the previously reported pressuremeter test results in lateritic residual soil. The typical cavity expansion and contraction characteristics of unsaturated Indian lateritic soil were then examined using this solution procedure. The effect of initial soil-state on cavity limit pressure, plastic radius, reverse yield pressure, and reverse plastic radius are also presented.
Keywords
cavity contraction; cavity expansion; soil state; suction; unsaturated residual soil;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Schnaid, F., Kratz de Oliveira, L.A. and Gehling, W.Y.Y. (2004), "Unsaturated constitutive surfaces from pressuremeter tests", J. Geotech. Geoenviron. Eng., 130(2), 174-185. https://doi.org/10.1061/(asce)1090-0241(2004)130:2(174).   DOI
2 Davis, E.H. (1969), Chapter six: Theories of Plasticity and the Failure of Soil Masses, (Ed., I.K. Lee), Butterworths, London, England.
3 Fredlund, D.G. and Xing, A. (1994), "Equations for the soil-water characteristic curve", Can. Geotech. J., 31(4), 521-532. https://doi.org/10.1139/t94-061.   DOI
4 Khalili, N., Habte, M.A. and Zargarbashi, S. (2008), "A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hysteresis", Comput. Geotech., 35(6), 872-889. https://doi.org/10.1016/j.compgeo.2008.08.003.   DOI
5 Latib, F.W.M., Taha, M.R. and Kasa, A. (2018), "A review on critical state parameters of residual soil", J. Eng. Appl. Sci., 13(17), 7465-7470. https://doi.org/10.36478/jeasci.2018.7465.7470.   DOI
6 Li, C. and Zou, J.F. (2019), "Created cavity expansion solution in anisotropic and drained condition based on Cam-Clay model", Geomech. Eng., 19(2), 141-151. https://doi.org/10.12989/gae.2019.19.2.141.   DOI
7 Li, C., Zou, J.F. and Sheng, Y.M. (2020), "Undrained solution for cavity expansion in strength degradation and tresca soils", Geomech. Eng., 21(6), 527-536. https://doi.org/10.12989/gae.2020.21.6.527.   DOI
8 Li, L., Xiang, Z.C., Zou, J.F. and Wang, F. (2019c), "An improved model of compaction grouting considering three-dimensional shearing failure and its engineering application", Geomech. Eng., 19(3), 217-227. https://doi.org/10.12989/gae.2019.19.3.217.   DOI
9 Ng, C.W.W., Xu, J. and Yung, S.Y. (2009), "Effects of wetting-drying and stress ratio on anisotropic stiffness of an unsaturated soil at very small strains", Can. Geotech. J., 46(9), 1062-1076. https://doi.org/10.1139/t09-043.   DOI
10 Wang, Y., Li, L. and Li, J. (2021), "A similarity solution for undrained expansion of a cylindrical cavity in K0-consolidated anisotropic soils", Geomech. Eng., 25(4), 303-315. https://doi.org/10.12989/gae.2021.25.4.303.   DOI
11 Collins, I.F., Pender, M.J. and Yan, W. (1992), "Cavity expansion in sands under drained loading conditions", Int. J. Numer. Anal. Meth. Geomech., 16(1), 3-23. https://doi.org/10.1016/0148-9062(92)92891-F.   DOI
12 Cao, L.F., Teh, C.I. and Chang, M.F. (2002), "Analysis of undrained cavity expansion in elasto-plastic soils with non-linear elasticity", Int. J. Numer. Anal. Meth. Geomech., 26(1), 25-52. https://doi.org/10.1002/nag.189.   DOI
13 Carter, J.P., Booker, J.R. and Yeung, S.K. (1986), "Cavity expansion in cohesive frictional soils", Geotechnique, 36(3), 349-358. https://doi.org/10.1680/geot.1986.36.3.349.   DOI
14 Cheng, Y., Yang, H.W. and Sun, D. (2018), "Cavity expansion in unsaturated soils of finite radial extent", Comput. Geotech., 102, 216-228. https://doi.org/10.1016/j.compgeo.2018.06.013.   DOI
15 Yu, H.S. and Houlsby, G.T. (1991), "Finite cavity expansion in dilatant soils: loading analysis", Geotechnique, 41(2), 173-183. https://doi.org/10.1680/geot.1991.41.2.173.   DOI
16 Schnaid, F., Ortigao, J.A., Mantaras, F.M., Cunha, R.P. and MacGregor, I. (2000), "Analysis of self-boring pressuremeter (SBPM) and Marchetti dilatometer (DMT) tests in granite saprolites", Can. Geotech. J., 37(4), 796-810. https://doi.org/10.1139/t00-005.   DOI
17 Tang, J., Wang, H. and Li, J. (2021), "A semi-analytical solution to spherical cavity expansion in unsaturated soils", Geomech. Eng., 25(4), 283-294. https://doi.org/10.12989/gae.2021.25.4.283.   DOI
18 Yang, H. and Russell, A.R. (2015a), "Cavity expansion in unsaturated soils exhibiting hydraulic hysteresis considering three drainage conditions", Int. J. Numer. Anal. Meth. Geomech., 39(18), 1975-2016. https://doi.org/10.1002/nag.2379.   DOI
19 Russell, A.R. and Buzzi, O. (2012), "A fractal basis for soil-water characteristics curves with hydraulic hysteresis", Geotechnique, 62(3), 269-274. https://doi.org/10.1680/geot.10.p.119.   DOI
20 Rouainia, M., Panayides, S., Arroyo, M. and Gens, A. (2020), "A pressuremeter-based evaluation of structure in london clay using a kinematic hardening constitutive model", Acta Geotech., 15(8), 2089-2101. https://doi.org/10.1007/s11440-020-00940-w.   DOI
21 Russell, A.R. and Khalili, N. (2006), "On the problem of cavity expansion in unsaturated soils", Comput. Mech., 37(4), 311-330. https://doi.org/10.1007/s00466-005-0672-7.   DOI
22 Salgado, R. and Randolph, M.F. (2001), "Analysis of cavity expansion in sand", Int. J. Geomech., 1(2), 175-192. https://doi.org/10.1061/(asce)1532-3641(2001)1:2(175).   DOI
23 Schanz, T. and Vermeer, P.A. (1996), "Angles of friction and dilatancy of sand", Geotechnique, 46(1), 145-151. https://doi.org/10.1680/geot.1996.46.1.145.   DOI
24 Zhao, C.F., Fei, Y., Zhao, C. and Jia, S.H. (2018), "Analysis of expanded radius and internal expanding pressure for undrained cylindrical cavity expansion", Int. J. Geomech., 18(2), 04017139. https://doi.org/10.1061/(asce)gm.1943-5622.0001058.   DOI
25 Yang, H. and Russell, A.R. (2015b), "Cone penetration tests in unsaturated silty sands", Can. Geotech. J., 53(3), 431-444. https://doi.org/10.1139/cgj-2015-0142.   DOI
26 Yu, H.S. and Carter, J.P. (2002), "Rigorous similarity solutions for cavity expansion in cohesive-frictional soils", Int. J. Geomech., 2(2), 233-258. https://doi.org/10.1061/(asce)1532-3641(2002)2:2(233).   DOI
27 Zhang, J. and Salgado, R. (2010), "Stress-dilatancy relation for mohr-coulomb soils following a non-associated flow rule", Geotechnique, 60(3), 223-226. https://doi.org/10.1680/geot.8.t.039.   DOI
28 Collins, I.F. and Stimpson, J.R. (1994), "Similarity solutions for drained a undrained cavity expansions in soils", Geotechnique, 44(1), 21-34. https://doi.org/10.1680/geot.1994.44.1.21.   DOI
29 Been, K. and Jefferies, M.G. (1985), "A state parameter for sands", Geotechnique, 35(2), 99-112. https://doi.org/10.1680/geot.1985.35.2.99.   DOI
30 Chen, S.L. and Abousleiman, Y.N. (2013), "Exact drained solution for cylindrical cavity expansion in modified Cam Clay soil", Geotechnique, 63(6), 510-517. https://doi.org/10.1680/geot.11.P.088.   DOI
31 Lu, N. and Kaya, M. (2014), "Power law for elastic moduli of unsaturated soil", J. Geotech. Geoenviron. Eng., 140(1), 46-56. https://doi.org/10.1061/(asce)gt.1943-5606.0000990.   DOI
32 Futai, M.M., Almeida, M.S.S. and Lacerda, W.A. (2004), "Yield, strength, and critical state behavior of a tropical saturated soil", J. Geotech. Geoenviron. Eng., 130(11), 1169-1179. https://doi.org/10.1061/(asce)1090-0241(2004)130:11(1169).   DOI
33 Lee, S.W., Kim, T.S., Sim, B.K., Kim, J.S. and Lee, I.M. (2012), "Effect of pressurized grouting on pullout resistance and group efficiency of compression ground anchor", Can. Geotech. J., 49(8), 939-953. https://doi.org/10.1139/t2012-059.   DOI
34 Li, C., Zou, J.F. and Li, L. (2019b), "Elasto-plastic solution for cavity expansion problem in anisotropic and drained soil mass", Geomech. Eng., 19(6), 513-522. https://doi.org/10.12989/gae.2019.19.6.513.   DOI
35 Russell, A.R. (2014), "How water retention in fractal soils depends on particle and pore sizes, shapes, volumes and surface areas", Geotechnique, 64(5), 379-390. https://doi.org/10.1680/geot.13.p.165.   DOI
36 Salgado, R. and Prezzi, M. (2007), "Computation of cavity expansion pressure and penetration resistance in sands", Int. J. Geomech., 7(4), 251-265. https://doi.org/10.1061/(asce)1532-3641(2007)7:4(251).   DOI
37 Li, C., Zou, J.F. and A.S. (2019a), "Closed-form solution for undrained cavity expansion in anisotropic soil mass based on spatially mobilized plane failure criterion", Int. J. Geomech., 19(7), 04019075. https://doi.org/10.1061/(asce)gm.1943-5622.0001458.   DOI
38 Thiyyakkandi, S., McVay, M., Bloomquist, D. and Lai, P. (2013), "Measured and predicted response of a new jetted and grouted precast pile with membranes in cohesionless soils", J. Geotech. Geoenviron. Eng., 139(8), 1334-1345. https://doi.org/10.1061/(asce)gt.1943-5606.0000860.   DOI