• 제목/요약/키워드: Residence Time

검색결과 1,131건 처리시간 0.024초

저압화학기상증착법을 이용한 ZrC 성장에 잔류시간이 미치는 영향 (Residence Time Effect on the Growth of ZrC by Low Pressure Chemical Vapor Deposition)

  • 박종훈;정충환;김도진;박지연
    • 한국세라믹학회지
    • /
    • 제45권5호
    • /
    • pp.280-284
    • /
    • 2008
  • In order to investigate residence time effect on the growth of ZrC film, the ZrC films grew with various system total pressure (P) and total flow rate (Q) by low pressure chemical vapor deposition because residence time is function of system total pressure and total flow rate. Thermodynamic calculations predict that the decomposition of source gases ($ZrCl_4$ and $CH_4$) would be low as increasing the residence time. Thermodynamic calculations results were proved by investigating deposition rate with various residence time. Deposition rate decreased with residence time of source gas increased. Besides, depletion effect accelerated diminution of deposition rate at high residence time. On the other hands, the deposition rated was increased as decreasing the residence time because fast moving of intermediate gas species decrease the depletion effect. The crystal structure was not changed with residence time. However, the largest size of faceted grain showed up to specific residence time and the size of grain was decreased whether residence time increase or not.

남해 강진만 담수유입에 따른 체류시간 변화 모델링 (Modeling Variation in Residence Time Response to Freshwater Discharge in Gangjin Bay, Korea)

  • 김진호;박성은;이원찬
    • 한국수산과학회지
    • /
    • 제54권4호
    • /
    • pp.480-488
    • /
    • 2021
  • The term residence time is defined as the time taken for substances in a system to leave the system and is a useful concept to explain the physical environment characteristics of a coastal area. It is important to know the spatial characteristics of the residence time to understand the behavioral properties of pollutants generated in a marine system. In this study, the spatial distribution of average residence time was calculated for Gangjin Bay, Korea, using a hydrodynamic model including a particle tracking module. The results showed that the average residence time was about 10 days at the surface layer and about 20 days at the bottom layer. Spatially, this was the longest residence time in the southwestern sea. There was no significant difference in average residence time at the surface layer due to freshwater discharge, but spatial variation at the bottom layer was larger. The average residence time at the bottom layer decreased in the southwestern area due to freshwater discharge and increased in the northern area. This result suggests that the residence time of anthropogenic pollutants may have a large spatial difference depending on the freshwater discharge, and thus the time taken to influence cultured organisms may also vary.

자란만 패류양식해역의 물리환경 설명을 위한 평균체류시간 산정 (Assessing Average Residence Time as a Physical Descriptor for Shellfish Farming Areas in Jaran Bay, Korea)

  • 김진호;박성은;김영민;김청숙;강성찬;정우성;심보람;엄기혁
    • 한국환경과학회지
    • /
    • 제29권3호
    • /
    • pp.273-282
    • /
    • 2020
  • Residence time is defined as the time taken for a material in a system to leave the system. The residence time characteristics in shellfish aquaculture determine the dispersion of excretion from aquaculture farms, along with the supply of food by seawater exchange. In this study, we estimated the spatial distribution of average residence time in the shellfish farming area using a particle tracking model. As a result, a relatively short average residence time of about 20 days or less was calculated in most areas, but an average residence time of more than 40 days was calculated in the inner areas. Relatively long average residence times were calculated along the west coast compared to the east coast, with the longest average residence time of more than 50 days in the northwestern areas. It can be inferred that the disturbance of the benthic ecosystem caused by shellfish farms is likely to be large because of the relatively weak dispersion of excrement from shellfish farms located on the west coast, especially in the northwest region. This distribution of average residence time is important for understanding the potential effects of seawater exchange on the environmental sustainability of shellfish farms, along with the seawater circulation characteristics of Jaran Bay.

소각로에서의 연소가스 체류시간 (The residence time of gas in an incinerator)

  • 김성준
    • 산업기술연구
    • /
    • 제36권
    • /
    • pp.3-7
    • /
    • 2016
  • The change of flue gas residence time with the location of air inlet in an incinerator is analysed. An independent numerical variable is the location of air inlet and dependant is the residence time of flue gas. The mean value of turbulence energy in a primary combustion chamber is also analysed. The flow field and the distribution of turbulence energy are investigated to evaluate their influence on the residence time of flue gas and the turbulence energy. As the position of secondary air inlet approaches to the top of primary combustion chamber, the residence time of gas and the turbulence energy become longer and larger respectively.

  • PDF

Effects of Cell Residence Time Distributions in Cellular Mobile Communication Systems

  • Yeo, Kun-Min;Jun, Chi-Hyuck
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1999년도 춘계학술대회 논문집
    • /
    • pp.6-10
    • /
    • 1999
  • We present a simulation result to the analysis of the effects of cell residence time distributions upon the expected channel occupancy time based on an analytic mobility model. Numerical examples show that exponential distribution provides upper and lower bound to the expected channel occupancy times of new calls and handoff calls. This fact reveals that the assumption of exponential distribution as the cell residence time distribution as the cell residence time distribution may over- or under-estimate cellular mobile systems.

  • PDF

2차 공기 주입 조건 변화에 따른 소형 소각로 내부의 유동장 분석 (Analysis of the Gas Flow Field of Primary Combustion Chamber with the Conditions of Secondary Air Injection)

  • 최병대;김성준
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.9-17
    • /
    • 2002
  • This analysis is aimed to find out how the conditions of secondary air injection affects the residence time and the turbulence energy of flue gas and flow field in a small incinerator. A commercial code, PHOENICS, is used to simulate the flow field of an Incinerator. The computational grid system is constructed in a cartesian coordinate system In this numerical experiment, an independent numerical variable is the conditions of secondary air injection and dependants are the residence time of flue gas and the mean value of turbulence energy in a primary combustion chamber. The flow field and the distribution of turbulence energy are analysed to evaluate the residence time of flue gas and the turbulence energy The computational results say that the tangential injection of secondary air make the residence time much longer than the radial injection and that the radial injection of secondary make turbulence much stronger than the tangential injection.

  • PDF

마그네슘 부유 분진의 입자 체류시간과 발화온도 (Ignition Temperature and Residence Time of Suspended Magnesium Particles)

  • 한우섭
    • 한국가스학회지
    • /
    • 제19권3호
    • /
    • pp.25-31
    • /
    • 2015
  • 본 연구에서는 부유 Mg분진의 최소발화온도(MIT)에 있어서 입자 체류시간이 어떠한 영향을 주는지를 실험자료와 입자속도의 계산결과를 사용하여 조사하였다. 평균입경이 증가하면 Mg분진의 MIT는 증가하는 반면에 입자 체류시간(Residence time)은 지수함수적으로 감소하여 분진의 발화 가능성이 저하되는 요인이 될 수 있음을 계산을 통해 확인할 수 있었다. 또한 온도증가에 의한 입자속도에의 영향은 평균입경이 클수록 미세하지만 증가하는 결과가 얻어졌다.

연소로 내 2차공기의 주유동 수직방향 선회분사로 인한 선회류가 스월수에 따른 가스 체류시간과 혼합 특성에 미치는 영향 (Effect of Swirling Flow by Normal Injection of Secondary Air on the Gas Residence Time and Mixing Characteristics in a Combustor)

  • 박상욱;전병일;류태우;황정호
    • 대한기계학회논문집B
    • /
    • 제30권1호
    • /
    • pp.48-56
    • /
    • 2006
  • We investigated gas residence time and mixing characteristics due to various swirl numbers generated by normal injection of secondary air to a lab-scale cylinderical combustor. The residence time was estimated by measuring the temporal pressure difference which was caused by deposition of test particles on a filter media after the injection by a syringe. The mixing characteristics were evaluated by standard deviation value of test gas concentration at different measuring points. The test gas concentration was detected by a gas analyzer. The swirl number of $20{\sim}30$ for ${\theta}=5^{\circ}$ caused long residence time enough to improve mixing characteristics. Numerical calculations were also carried out to understand physical meanings of the experimental results.

흡착/촉매 공정개선을 위한 사이클론 내 유동특성 및 활성탄 체류시간 산정 (Flow Characteristics and Residence Time of Activated Carbon in the Cyclone for Optimized Design of an Adsorption/Catalysis Reactor)

  • 최청렬
    • 대한기계학회논문집B
    • /
    • 제31권5호
    • /
    • pp.416-424
    • /
    • 2007
  • In adsorption/catalytic process, numerical analysis has been performed to identify the flow characteristics of flue gas in the cyclone and to estimate the residence time of activated carbon using Computational Fluid Dynamics (CFD) technique. To consider flue gas and activated carbon particles simultaneously, Euler-Lagrangian model was employed so that residence time could be obtained from the numerical analysis directly. The numerical analysis has been performed with different three particle sizes and compared each flow characteristics with particle’ size. Fundamental flow patterns of flue gas and activated carbon particles, pressure distribution, residence time of flue gas, and activated carbon particles and distribution of activated carbon have been obtained from the numerical analysis.

Effect of Swirling Flow by Normal Injection of Secondary Air on the Gas Residence Time and Mixing Characteristics in a Lab-Scale Cold Model Combustor

  • Shin, D.;Park, S.;Jeon, B.;Yu, T.;Hwang, J.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2284-2291
    • /
    • 2006
  • The present study investigates gas residence time and mixing characteristics for various swirl numbers generated by injection of secondary air into a lab-scale cylindrical combustor. Fine dust particles and butane gas were injected into the test chamber to study the gas residence time and mixing characteristics, respectively. The mixing characteristics were evaluated by standard deviation value of trace gas concentration at different measurement points. The measurement points were located 25 mm above the secondary air injection position. The trace gas concentration was detected by a gas analyzer. The gas residence time was estimated by measuring the temporal pressure difference across a filter media where the particles were captured. The swirl number of 20 for secondary air injection angle of 5$^{\circ}$ gave the best condition: long gas residence time and good mixing performance. Numerical calculations were also carried out to study the physical meanings of the experimental results, which showed good agreement with numerical results.