• Title/Summary/Keyword: Reservoir Computing

Search Result 10, Processing Time 0.03 seconds

Optimization of Memristor Devices for Reservoir Computing (축적 컴퓨팅을 위한 멤리스터 소자의 최적화)

  • Kyeongwoo Park;HyeonJin Sim;HoBin Oh;Jonghwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Recently, artificial neural networks have been playing a crucial role and advancing across various fields. Artificial neural networks are typically categorized into feedforward neural networks and recurrent neural networks. However, feedforward neural networks are primarily used for processing static spatial patterns such as image recognition and object detection. They are not suitable for handling temporal signals. Recurrent neural networks, on the other hand, face the challenges of complex training procedures and requiring significant computational power. In this paper, we propose memristors suitable for an advanced form of recurrent neural networks called reservoir computing systems, utilizing a mask processor. Using the characteristic equations of Ti/TiOx/TaOy/Pt, Pt/TiOx/Pt, and Ag/ZnO-NW/Pt memristors, we generated current-voltage curves to verify their memristive behavior through the confirmation of hysteresis. Subsequently, we trained and inferred reservoir computing systems using these memristors with the NIST TI-46 database. Among these systems, the accuracy of the reservoir computing system based on Ti/TiOx/TaOy/Pt memristors reached 99%, confirming the Ti/TiOx/TaOy/Pt memristor structure's suitability for inferring speech recognition tasks.

  • PDF

Development of WRAP-SALT for Quantitative Analysis of Water Supply Capabilities considering Water Quality (수질을 고려한 수자원 공급의 정량적 분석을 위한 WRAP-SALT 개발)

  • Lee, Chi-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.58-58
    • /
    • 2011
  • The Texas Commission on Environmental Quality(TCEQ) WAM(Water Availability Modeling) System consists of the generalized Water Rights Analysis Package(WRAP) river/reservoir system water management simulation model, 22 sets of WRAP hydrology and water rights input files for the 23 river basins of Texas, geographic information system tools, and other supporting databases. The WRAP/WAM modeling system, as routinely applied since the late 1990s, has not included consideration of water quality. Recently developed WRAP-SALT(Water Rights Analysis Package) is designed primarily for computing concentration frequency statistics and supply reliability indices at locations of interest in a river system for alternative water development and management scenarios. Though motivated primarily by natural salt pollution, WRAP-SALT water quality modeling features are applicable to essentially any conservative water quality constituent. The Brazos River studies discussed in this paper focus on total dissolved solids, though the available observed data also includes chloride and sulfate which can be modeled as individual constituents. The WRAP-SALT salinity input file contains loads or concentrations of salinity inflows during each month of the hydrologic period-of-analysis and reservoir storage at the beginning of the simulation. The WRAP-SALT model computes salt loads and concentrations for each control point of a river/reservoir system for inflows and outflows during the month and end-of-month reservoir storage for each month of the hydrologic period-of-analysis, for given loads entering the system. River reaches connect control points. The mass balance algorithms proceed from upstream to downstream, with outflow from one river reach contributing to inflow to the next downstream reach. In a given month, for each control point in sequence, the inflow loads are first computed. Loads and concentrations of outflows and reservoir storage at the control point are then determined. Complete mixing during the month is assumed at locations without reservoir storage.

  • PDF

A Study on Measurement System for Water Volume of the Reservoir using Drone and Sensors (드론과 센서를 이용한 저수지 수량 측정 시스템에 관한 연구)

  • Kim, Hyeong-gyun;Hwang, Jun;Bang, Jong-ho
    • Journal of Internet Computing and Services
    • /
    • v.20 no.6
    • /
    • pp.47-54
    • /
    • 2019
  • Social dredging of various river facilities, such as dams and agricultural reservoirs currently being constructed, should be done to ensure stable reservoirs. However, it is difficult to find a system that tells the exact amount of water in real-time in a reservoir or dam. These measurements require an automated system to collect and analyze highly accurate data in real time. In this study, we propose a method to measure the amount of water and soil of reservoir in real time through multi-division volume calculation using a drone, and this method can detect sediment conditions in real time and determine the exact timing and scale of dredging.

Development of Re8ervoirs Storage Management System(RESTOMS) (저수관리 시스템 개발)

  • 김현영;황철상;정건배;정종호유
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.65-72
    • /
    • 1993
  • When a drought occurs in an area irrigated by multi-reservoirs, onerating a single reservoir separately to control the reservoir' storage is not a desirable solution. In order to reduce damages effectively for the areal drought, the storage of the reservoirs within the areal boundary should be managed as a group. Storage management procedures are as follows : 1. Collecting and checking the present storages of all reservoirs 2. Computing the drought frequency and depth; and finally, establishing a suitable storage saving strategy based on the estimated drought depth. For the purpose of this storage management, the RESTOMS(Reservoirs Storage Management System) was developed and the system was composed of the PRIME computer and the ORACLE as a distributed database management system, which was the host computer of Rural Development Corporation and would be on-lined with the regional offices throughout the country. Reservoirs operated by Farm Land Improvment Association were comprised in the DB system. Using the RESTOMS, the drought frequencies and drought depths were calculated with respect to the reservoir storage records(1967 to 1992). It was obvious that the results were closely corresponding to the real drought records.

  • PDF

Trends in Neuromorphic Photonics Technology (뉴로모픽 포토닉스 기술 동향)

  • Kwon, Y.H.;Kim, K.S.;Baek, Y.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.4
    • /
    • pp.34-41
    • /
    • 2020
  • The existing Von Neumann architecture places limits to data processing in AI, a booming technology. To address this issue, research is being conducted on computing architectures and artificial neural networks that simulate neurons and synapses, which are the hardware of the human brain. With high-speed, high-throughput data communication infrastructures, photonic solutions today are a mature industrial reality. In particular, due to the recent outstanding achievements of artificial neural networks, there is considerable interest in improving their speed and energy efficiency by exploiting photonic-based neuromorphic hardware instead of electronic-based hardware. This paper covers recent photonic neuromorphic studies and a classification of existing solutions (categorized into multilayer perceptrons, convolutional neural networks, spiking neural networks, and reservoir computing).

Numerical simulation of single-phase two-components flow in naturally fractured oil reservoirs

  • Debossam, Joao Gabriel Souza;dos Santos Heringer, Juan Diego;de Souza, Grazione;Souto, Helio Pedro Amaral
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.129-146
    • /
    • 2019
  • The main goal of this work is to develop a numerical simulator to study an isothermal single-phase two-component flow in a naturally fractured oil reservoir, taking into account advection and diffusion effects. We use the Peng-Robinson equation of state with a volume translation to evaluate the properties of the components, and the discretization of the governing partial differential equations is carried out using the Finite Difference Method, along with implicit and first-order upwind schemes. This process leads to a coupled non-linear algebraic system for the unknowns pressure and molar fractions. After a linearization and the use of an operator splitting, the Conjugate Gradient and Bi-conjugated Gradient Stabilized methods are then used to solve two algebraic subsystems, one for the pressure and another for the molar fraction. We studied the effects of fractures in both the flow field and mass transport, as well as in computing time, and the results show that the fractures affect, as expected, the flow creating a thin preferential path for the mass transport.

Drought Estimation Model Using a Evaporation Pan with 50 mm Depth (50mm 깊이 증발(蒸發) 팬을 이용한 한발 평가 모델 설정)

  • Oh, Yong Taeg;Oh, Dong Shig;Song, Kwan Cheol;Um, Ki Cheol;Shin, Jae Sung;Im, Jung Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.92-106
    • /
    • 1996
  • Imaginary grass field was assumed suitable as the representative one for simplified estimation of local drought, and a moisture balance booking model computing drought was developed with the limited numbers of its determining factors, such as crop coefficient of the field, reservoir capacity of the soil, and the beginning point of drought as defined by soil moisture status. The maximum effective rainfall was assumed to be the same as the available free space of soil reservoir capacity. The model is similar to a definite depth evaporation pan, which stores rainfall as much as the available free space on the water in it and consumes the water by evaporation. When the pan keeps water less than a certain defined level, it is droughty. The model simulates soil moisture deficit on the assumed grass field for the drought estimation. The model can assess the water requirement, drought intensity, and the index of yield decrement due to drought. The influencing intensity indices of the selected factors were 100, 21, and 16 respectively for crop coefficient, reservoir capacity, and drought beginning point, determined by the annual water requirements as influenced by them in the model. The optimum values of the selected factors for the model were respectively 58% for crop coefficient defined on the energy indicator scale of the small copper pan evaporation, 50 mm for reservoir capacity on the basis of the average of experimentally determined values for sandy loam, loam, clay loam, and clay soils, and 65% of the reservoir capacity for the beginning point of drought.

  • PDF

Accuracy Improvements of DAM-Reservoir Storage Volume Estimation based on GIS (GIS기반에서 댐 저수량 산정의 정확도 향상)

  • Jeong, InJu;Moon, DooYoul;Jung, BeomSeok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.136-144
    • /
    • 2005
  • GIS analyzes various topographic feature in three dimensions using triangulated irregular network (TIN). This paper proposed a method that can analyze topographic features effectively in three dimensions. Method developed in this study can calculate earth-volume, the inundation volume, storage volume etc, effectively. We could reduce error than existing volume calculation methods in computing volume in addition to water level's change about each. Also, the develop method can improve accuracy in measuring the storage of reservoirs. Main result of this paper id to develop a efficient calculation method using contour and elevation data on digital map.

  • PDF

Rock mechanics and wellbore stability in Dongfang 1-1 Gas Field in South China Sea

  • Yan, Chuanliang;Deng, Jingen;Cheng, Yuanfang;Yan, Xinjiang;Yuan, Junliang;Deng, Fucheng
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.465-481
    • /
    • 2017
  • Thermal effect has great influence on wellbore stability in Dongfang 1-1 (DF 1-1) gas field, a reservoir with high-temperature and high-pressure. In order to analyze the wellbore stability in DF1-1 gas field, the variation of temperature field after drilling was analyzed. In addition, the effect of temperature changing on formation strength and the thermal expansion coefficients of formation were tested. On this basis, a wellbore stability model considering thermal effect was developed and the thermal effect on fracture pressure and collapse pressure was analyzed. One of the main challenges in this gas field is the decreasing temperature of the wellbore will reduce fracture pressure substantially, resulting in the drilling fluid leakage. If the drilling fluid density was reduced, kick or blowout may happen. Therefore, the key of safe drilling in DF1-1 gas field is to predict the fracture pressure accurately.

A Scheme for Computing Time-domain Electromagnetic Fields of a Horizontally Layered Earth (수평다층구조에 대한 시간영역 전자기장의 계산법)

  • Jang, Hangilro;Kim, Hee Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.139-144
    • /
    • 2013
  • A computer program has been developed to estimate time-domain electromagnetic (EM) responses for a onedimensional model with multiple source and receiver dipoles that are finite in length. The time-domain solution can be obtained by applying an inverse fast Fourier transform (FFT) to frequency-domain fields for efficiency. Frequency-domain responses are first obtained for 10 logarithmically equidistant frequencies per decade, and then cubic spline interpolated to get the FFT input. In the case of phases, the phase curve must be made to be continuous prior to the spline interpolation. The spline interpolated data are convolved with a source current waveform prior to FFT. In this paper, only a step-off waveform is considered. This time-domain code is verified with an analytic solution and EM responses for a marine hydrocarbon reservoir model. Through these comparisons, we can confirm that the accuracy of the developed program is fairly high.