• Title/Summary/Keyword: Research dataset

Search Result 1,353, Processing Time 0.028 seconds

다중 애플리케이션 처리를 위한 경량 인공지능 하드웨어 기반 통합 프레임워크 연구 (A Study of Unified Framework with Light Weight Artificial Intelligence Hardware for Broad range of Applications)

  • 전석훈;이재학;한지수;김병수
    • 한국전자통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.969-976
    • /
    • 2019
  • 경량 인공지능 하드웨어는 다양한 문제의 해결을 위해 멀티모달 센서 데이터를 입력받아 특징 선택, 추출, 차원축소, 정규화 과정을 수행한 후 인공지능 엔진으로 예측 결과를 도출한다. 다양한 애플리케이션에서 높은 성능을 달성하기 위해서는 이러한 경량 인공지능 하드웨어의 초 매개변수와 전체적인 전처리 시스템의 구성을 데이터에 맞춰 최적화할 필요가 있다. 본 논문에서는 경량 인공지능 하드웨어의 효율적인 제어 및 최적화를 위한 통합 프레임워크를 제안한다. 제안된 통합 프레임워크는 데이터 전처리 및 뉴로모픽 기반 경량 인공지능 엔진을 유연하게 재구성할 수 있으며, 최적의 모델을 생성할 수 있다. 기능검증을 위해 손글씨 이미지 데이터 세트와 관성 센서 데이터 기반의 낙상 검출 데이터 세트를 사용하였으며, 실험 결과 제안하는 통합 프레임워크가 각각의 데이터 세트에서 90% 이상의 정확도를 갖는 최적의 모델을 생성함을 확인하였다.

딥러닝 기반 제조 공장 내 AGV 객체 인식에 대한 연구 (Object Detection of AGV in Manufacturing Plants using Deep Learning)

  • 이길원;이활리;정희운
    • 한국정보통신학회논문지
    • /
    • 제25권1호
    • /
    • pp.36-43
    • /
    • 2021
  • 본 논문에서는 제조 공장 내 AGV (Automated Guided Vehicle) 주행 중 객체 인식을 위한 YOLO v3 알고리즘의 정확도에 대해 살펴보았다. 실험을 위해 2D LiDAR 및 스테레오 카메라가 장착된 AGV를 준비하였다. AGV 주행 중 2D LiDAR를 활용한 SLAM 기법으로 지도 정보를 획득하였고 스테레오 카메라를 활용한 객체 인식이 이루어졌다. 그리고 YOLO v3 알고리즘 기반의 학습 정도에 따른 재현율, AP, mAP 등을 측정하였다. 실험 결과, 4000장의 train data 와 500장의 test data 로 훈련된 YOLO v3 알고리즘에 AGV에 장착된 스테레오 카메라의 시점과 높이에서 획득한 1200장의 이미지를 추가로 학습할 경우 mAP가 약 10% 향상되었다. 정밀도(precision) 와 재현율 역시 각각 6.8%와 16.4% 향상되었다.

위성 SAR 영상의 지상차량 표적 데이터 셋 및 탐지와 객체분할로의 적용 (A Dataset of Ground Vehicle Targets from Satellite SAR Images and Its Application to Detection and Instance Segmentation)

  • 박지훈;최여름;채대영;임호;유지희
    • 한국군사과학기술학회지
    • /
    • 제25권1호
    • /
    • pp.30-44
    • /
    • 2022
  • The advent of deep learning-based algorithms has facilitated researches on target detection from synthetic aperture radar(SAR) imagery. While most of them concentrate on detection tasks for ships with open SAR ship datasets and for aircraft from SAR scenes of airports, there is relatively scarce researches on the detection of SAR ground vehicle targets where several adverse factors such as high false alarm rates, low signal-to-clutter ratios, and multiple targets in close proximity are predicted to degrade the performances. In this paper, a dataset of ground vehicle targets acquired from TerraSAR-X(TSX) satellite SAR images is presented. Then, both detection and instance segmentation are simultaneously carried out on this dataset based on the deep learning-based Mask R-CNN. Finally, this paper shows the future research directions to further improve the performances of detecting the SAR ground vehicle targets.

Evaluating flexural strength of concrete with steel fibre by using machine learning techniques

  • Sharma, Nitisha;Thakur, Mohindra S.;Upadhya, Ankita;Sihag, Parveen
    • Composite Materials and Engineering
    • /
    • 제3권3호
    • /
    • pp.201-220
    • /
    • 2021
  • In this study, potential of three machine learning techniques i.e., M5P, Support vector machines and Gaussian processes were evaluated to find the best algorithm for the prediction of flexural strength of concrete mix with steel fibre. The study comprises the comparison of results obtained from above-said techniques for given dataset. The dataset consists of 124 observations from past research studies and this dataset is randomly divided into two subsets namely training and testing datasets with (70-30)% proportion by weight. Cement, fine aggregates, coarse aggregates, water, super plasticizer/ high-range water reducer, steel fibre, fibre length and curing days were taken as input parameters whereas flexural strength of the concrete mix was taken as the output parameter. Performance of the techniques was checked by statistic evaluation parameters. Results show that the Gaussian process technique works better than other techniques with its minimum error bandwidth. Statistical analysis shows that the Gaussian process predicts better results with higher coefficient of correlation value (0.9138) and minimum mean absolute error (1.2954) and Root mean square error value (1.9672). Sensitivity analysis proves that steel fibre is the significant parameter among other parameters to predict the flexural strength of concrete mix. According to the shape of the fibre, the mixed type performs better for this data than the hooked shape of the steel fibre, which has a higher CC of 0.9649, which shows that the shape of fibers do effect the flexural strength of the concrete. However, the intricacy of the mixed fibres needs further investigations. For future mixes, the most favorable range for the increase in flexural strength of concrete mix found to be (1-3)%.

기계학습 기반의 메타모델을 활용한 ZnO 바리스터 소결 공정 최적화 연구 (Sintering process optimization of ZnO varistor materials by machine learning based metamodel)

  • 김보열;서가원;하만진;홍연우;정찬엽
    • 한국결정성장학회지
    • /
    • 제31권6호
    • /
    • pp.258-263
    • /
    • 2021
  • ZnO 바리스터는 다결정구조를 가지는 반도체 소자로 결정립과 입계의 미세구조 제어를 통해 비선형적인 전류/전압 특성을 가지기 때문에 서지(surge)전압으로부터 회로를 보호하는 역할을 한다. 이러한 ZnO 바리스터에서 원하는 전기적 물성을 얻기 위해서는 소결 공정에서 미세구조의 제어가 중요하다. 따라서 소결 공정에서 중요한 변수들과 소결체의 전기적 물성인 유전율로 구성된 데이터셋을 정의한 후 실험계획법 기반으로 데이터를 수집했다. 수집된 실험데이터셋을 기계학습 알고리즘에 학습하여 메타모델을 개발했고, 개발된 메타모델에 수치기반 최적화 알고리즘인 HMA(Hybrid Metaheuristic Algorithm)를 적용하여 최대 유전율을 가질 수 있는 공정조건을 도출했다. 이러한 메타모델 기반의 최적화를 다변수 시스템인 세라믹공정에 적용한다면 최소한의 실험만으로 최적 공정조건 탐색이 가능할 것으로 판단된다.

MEC 기반 비디오 캐시 시나리오를 위한 시계열 사용자 요청 패턴 데이터 세트 분석 (Analysis of time-series user request pattern dataset for MEC-based video caching scenario)

  • 왈리드 아크바르;아팍 모하마드;송왕철
    • KNOM Review
    • /
    • 제24권1호
    • /
    • pp.20-28
    • /
    • 2021
  • 소셜 미디어 애플리케이션 및 모바일 장치의 광범위한 사용으로 인해 데이터 트래픽이 지속해서 증가하고 있다. 소셜 미디어 애플리케이션은 끝없이 많은 양의 멀티미디어 트래픽, 특히 비디오 트래픽을 생성하고 있다. YouTube, Daily Motion 및 Netflix와 같은 많은 소셜 미디어 플랫폼이 생성하는 것이다. 이러한 플랫폼에서는 다른 비디오와 비교하여 몇 개의 인기 비디오가 여러 번 요청된다. 이러한 인기 있는 비디오는 지속적인 사용자 요구 사항을 충족하기 위해 사용자 주변에 캐시해야 한다. MEC는 일관된 사용자 요구와 사용자 근접 캐시를 위한 필수 패러다임으로 부상했다. 시간에 따라 사용자 요구 패턴이 어떻게 달라지는지를 이해하는 것이 과제이다. 본 논문은 공개 데이터셋인 MovieLens 20M, MovieLens 100K, The Movies Dataset 3개를 분석하여 시간에 따른 사용자 요청 패턴을 찾는다. 모든 데이터셋의 시간별, 일별, 월별 및 연간 추세를 확인할 수 있다. MEC 기반 비디오 캐시 시나리오에서 사용자 요청 패턴을 분석 및 생성함으로써, 많은 연구에서 사용될 수 있을 것이다.

다양한 데이터 전처리 기법과 데이터 오버샘플링을 적용한 GRU 모델 기반 이상 탐지 성능 비교 (Comparison of Anomaly Detection Performance Based on GRU Model Applying Various Data Preprocessing Techniques and Data Oversampling)

  • 유승태;김강석
    • 정보보호학회논문지
    • /
    • 제32권2호
    • /
    • pp.201-211
    • /
    • 2022
  • 최근 사이버보안 패러다임의 변화에 따라, 인공지능 구현 기술인 기계학습과 딥러닝 기법을 적용한 이상탐지 방법의 연구가 증가하고 있다. 본 연구에서는 공개 데이터셋인 NGIDS-DS(Next Generation IDS Dataset)를 이용하여 GRU(Gated Recurrent Unit) 신경망 기반 침입 탐지 모델의 이상(anomaly) 탐지 성능을 향상시킬 수 있는 데이터 전처리 기술에 관한 비교 연구를 수행하였다. 또한 정상 데이터와 공격 데이터 비율에 따른 클래스 불균형 문제를 해결하기 위해 DCGAN(Deep Convolutional Generative Adversarial Networks)을 적용한 오버샘플링 기법 등을 사용하여 오버샘플링 비율에 따른 탐지 성능을 비교 및 분석하였다. 실험 결과, 시스템 콜(system call) 특성과 프로세스 실행패스 특성에 Doc2Vec 알고리즘을 사용하여 전처리한 방법이 좋은 성능을 보였고, 오버샘플링별 성능의 경우 DCGAN을 사용하였을 때, 향상된 탐지 성능을 보였다.

인공지능을 활용한 C-Arm에서 수술용 거즈 검출을 위한 데이터셋 구축 및 검출모델 적용에 관한 연구 (A Study on the Dataset Construction and Model Application for Detecting Surgical Gauze in C-Arm Imaging Using Artificial Intelligence)

  • 김진엽;황호성;이병주;최용진;이강석;김호철
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권4호
    • /
    • pp.290-297
    • /
    • 2022
  • During surgery, Surgical instruments are often left behind due to accidents. Most of these are surgical gauze, so radioactive non-permeable gauze (X-ray gauze) is used for preventing of accidents which gauze is left in the body. This gauze is divided into wire and pad type. If it is confirmed that the gauze remains in the body, gauze must be detected by radiologist's reading by imaging using a mobile X-ray device. But most of operating rooms are not equipped with a mobile X-ray device, but equipped C-Arm equipment, which is of poorer quality than mobile X-ray equipment and furthermore it takes time to read them. In this study, Use C-Arm equipment to acquire gauze image for detection and Build dataset using artificial intelligence and select a detection model to Assist with the relatively low image quality and the reading of radiology specialists. mAP@50 and detection time are used as indicators for performance evaluation. The result is that two-class gauze detection dataset is more accurate and YOLOv5 model mAP@50 is 93.4% and detection time is 11.7 ms.

다중 스케일 어텐션과 심층 앙상블 기반 동물 피부 병변 분류 기법 (Multi-scale Attention and Deep Ensemble-Based Animal Skin Lesions Classification)

  • 곽민호;김경태;최재영
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1212-1223
    • /
    • 2022
  • Skin lesions are common diseases that range from skin rashes to skin cancer, which can lead to death. Note that early diagnosis of skin diseases can be important because early diagnosis of skin diseases considerably can reduce the course of treatment and the harmful effect of the disease. Recently, the development of computer-aided diagnosis (CAD) systems based on artificial intelligence has been actively made for the early diagnosis of skin diseases. In a typical CAD system, the accurate classification of skin lesion types is of great importance for improving the diagnosis performance. Motivated by this, we propose a novel deep ensemble classification with multi-scale attention networks. The proposed deep ensemble networks are jointly trained using a single loss function in an end-to-end manner. In addition, the proposed deep ensemble network is equipped with a multi-scale attention mechanism and segmentation information of the original skin input image, which improves the classification performance. To demonstrate our method, the publicly available human skin disease dataset (HAM 10000) and the private animal skin lesion dataset were used for the evaluation. Experiment results showed that the proposed methods can achieve 97.8% and 81% accuracy on each HAM10000 and animal skin lesion dataset. This research work would be useful for developing a more reliable CAD system which helps doctors early diagnose skin diseases.

Assessment of Historical and Future Climatic Trends in Seti-Gandaki Basin of Nepal. A study based on CMIP6 Projections

  • Bastola Shiksha;Cho Jaepil;Jung Younghun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.162-162
    • /
    • 2023
  • Climate change is a complex phenomenon having its impact on diverse sectors. Temperature and precipitation are two of the most fundamental variables used to characterize climate, and changes in these variables can have significant impacts on ecosystems, agriculture, and human societies. This study evaluated the historical (1981-2010) and future (2011-2100) climatic trends in the Seti-Gandaki basin of Nepal based on 5 km resolution Multi Model Ensemble (MME) of 18 Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) for SSP1-2.6, SSP2-4.5 and SSP5-85 scenarios. For this study, ERA5 reanalysis dataset is used for historical reference dataset instead of observation dataset due to a lack of good observation data in the study area. Results show that the basin has experienced continuous warming and an increased precipitation pattern in the historical period, and this rising trend is projected to be more prominent in the future. The Seti basin hosts 13 operational hydropower projects of different sizes, with 10 more planned by the government. Consequently, the findings of this study could be leveraged to design adaptation measures for existing hydropower schemes and provide a framework for policymakers to formulate climate change policies in the region. Furthermore, the methodology employed in this research could be replicated in other parts of the country to generate precise climate projections and offer guidance to policymakers in devising sustainable development plans for sectors like irrigation and hydropower.

  • PDF