Browse > Article
http://dx.doi.org/10.12989/cme.2021.3.3.201

Evaluating flexural strength of concrete with steel fibre by using machine learning techniques  

Sharma, Nitisha (Department of Civil Engineering, Shoolini University)
Thakur, Mohindra S. (Department of Civil Engineering, Shoolini University)
Upadhya, Ankita (Department of Civil Engineering, Shoolini University)
Sihag, Parveen (Department of Civil Engineering, Chandigarh University)
Publication Information
Composite Materials and Engineering / v.3, no.3, 2021 , pp. 201-220 More about this Journal
Abstract
In this study, potential of three machine learning techniques i.e., M5P, Support vector machines and Gaussian processes were evaluated to find the best algorithm for the prediction of flexural strength of concrete mix with steel fibre. The study comprises the comparison of results obtained from above-said techniques for given dataset. The dataset consists of 124 observations from past research studies and this dataset is randomly divided into two subsets namely training and testing datasets with (70-30)% proportion by weight. Cement, fine aggregates, coarse aggregates, water, super plasticizer/ high-range water reducer, steel fibre, fibre length and curing days were taken as input parameters whereas flexural strength of the concrete mix was taken as the output parameter. Performance of the techniques was checked by statistic evaluation parameters. Results show that the Gaussian process technique works better than other techniques with its minimum error bandwidth. Statistical analysis shows that the Gaussian process predicts better results with higher coefficient of correlation value (0.9138) and minimum mean absolute error (1.2954) and Root mean square error value (1.9672). Sensitivity analysis proves that steel fibre is the significant parameter among other parameters to predict the flexural strength of concrete mix. According to the shape of the fibre, the mixed type performs better for this data than the hooked shape of the steel fibre, which has a higher CC of 0.9649, which shows that the shape of fibers do effect the flexural strength of the concrete. However, the intricacy of the mixed fibres needs further investigations. For future mixes, the most favorable range for the increase in flexural strength of concrete mix found to be (1-3)%.
Keywords
concrete; flexural Strength; gaussian processes; M5P; support vector machines;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sobhani, J., Najimi, M., Pourkhorshidi, A.R. and Parhizkar, T. (2010), "Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models", Constr. Build. Mater., 24(2010), 709-718. http://doi.org/10.1016/j.conbuildmat.2009.10.037.   DOI
2 Wang, Y. and Witten, I.H. (1996), "Induction of model trees for predicting continuous classes", University of Waikato, Department of Computer Science, Hamilton, New Zealand.
3 Zhang, L., Zhao, J., Fan, C. and Wang, Z. (2020), "Effect of surface shape and content of steel fiber on mechanical properties of concrete", Adv. Civil Eng., 8834507. https://doi.org/10.1155/2020/8834507.   DOI
4 Han, Q., Gui, C., Xu, J. and Lacidogna, G. (2019), "A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm", Constr. Build. Mater., 226, 734-742. http://doi.org/10.1016/j.conbuildmat.2019.07.315.   DOI
5 Khater, H.M., El Nagar, A.M., Ezzat, M. and Lottfy, M. (2020), "Fabrication of sustainable geo-polymer mortar incorporating granite waste", Compos. Mater. Eng., 2(1), 1-12. https://doi.org/10.12989/cme.2020.2.1.001.   DOI
6 Lau, A. and Anson, M. (2006), "Effect of high temperatures on high performance steel fibre reinforced concrete", Cement Concr. Res., 36(9), 1698-1707. https://doi.org/10.1016/j.cemconres.2006.03.024.   DOI
7 Nalanth, N., Venkatesan, P.V, and Ravikumar, M.S. (2014), "Evaluation of the fresh and hardened properties of steel fibre reinforced self-compacting concrete using recycled aggregates as a replacement material" Adv. Civil Eng., 671547. https://doi.org/10.1155/2014/671547.   DOI
8 Salcedo-Sanz, S., Rojo-Alvarez, J.L., Martinez-Ramon, M. and Camps-Valls, G. (2014), "Support vector machines in engineering: An overview", WIREs Data Min. Knowl. Discov., 4(3), 234-267. http://doi.org/10.1002/widm.1125.   DOI
9 Sharma, N., Thakur, M.S., Vambol, V., Vambol, S. (2021), Predicting Compressive Strength of Concrete Matrix Using Engineered Cementitious Composites: A Comparative Study between ANN and RF Models, in Computational Technologies in Materials Science, CRC Press.
10 Suthar, M. (2019), "Applying several machine learning approaches for the prediction of unconfined compressive strength of stabilized pond ashes", Neural Comput. Appl., 32(13), 9019-9028. https://doi.org/10.1007/s00521-019-04411-6.   DOI
11 Fladra, J., Bily, P. and Broukalova, I. (2019), "Evaluation of steel fiber distribution in concrete by computer aided image analysis", Compos. Mater. Eng., 1(1), 49-70. http://doi.org/10.12989/cme.2019.1.1.049.   DOI
12 Thakur, M.S., Pandhiani, S.M., Kashyap, V., Upadhya, A. and Sihag, P. (2021), "Predicting bond strength of FRP bars in concrete using soft computing techniques", Arab. J. Sci. Eng., 46(5), 49510-4969. https://doi.org/10.1007/s13369-020-05314-8.   DOI
13 Lee, N.J., Lai, G.S., Lau, W.J. and Ismail, A.F. (2020), "Effect of poly(ethylene glycol) on the properties of mixed matrix membranes for improved filtration of highly concentrated oily solution", Compos. Mater. Eng., 2(1), 43-51. http://doi.org/10.12989/cme.2020.2.1.043.   DOI
14 Upadhya, A., Thakur, M.S., Sharma, N. and Sihag, P. (2021), "Assessment of soft computing-based techniques for the prediction of marshall stability of asphalt concrete reinforced with glass fiber", Int. J. Pavement Res. Technol., 1-20. https://doi.org/10.1007/s42947-021-00094-2.   DOI
15 Laghari, R.A., Li, J., Laghari, A.A. and Wang, S. (2019), "A review on application of soft computing techniques in machining of particle reinforcement metal matrix composites", Arch. Computat. Method Eng., 27(5), 1363-1377. https://doi.org/10.1007/s11831-019-09340-0.   DOI
16 Manoharan, S.V. and Anandan, S. (2014), "Steel fibre reinforcing characteristics on the size reduction of fly ash based concrete", Adv. Civil Eng., 217473. https://doi.org/10.1155/2014/217473.   DOI
17 Soulioti, D.V., Barkoula, N.M., Paipetis, A. and Matikas, T.E. (2011), "Effects of fibre geometry and volume fraction on the flexural behavior of steel-fibre reinforced concrete", Strain, 47, 535-541. http://doi.org/10.1111/j.1475-1305.2009.00652.x.   DOI
18 Nataraja, M.C., Nagaraj, T.S. and Basavaraja, S.B., (2005), "Reproportioning of steel fibre reinforced concrete mixes and their impact resistance", Cement Concrete Res., 35(12), 2350-2359. http://doi.org/10.1016/j.cemconres.2005.06.011.   DOI
19 Nhu, V.H., Shahabi, H., Nohani, E., Shirzadi, A., Ansari, N.A., Bahrami, S., Miraki, S., Geertsema, M. and Nguyen, H. (2020), "Daily water level prediction of zrebar lake(Iran): A comparison between M5P, random forest, random tree and reduced error pruning trees algorithms", Int. J. Geo-Inform., 9(8), 479. http://doi.org/10.3390/ijgi9080479.   DOI
20 Quinlan, J.R. (1992), "Learning with continuous classes", Proceeding of the 5th Australian Joint Conference on Artificial Intelligence, 92, 343-34. https://doi.org/10.1142/9789814536271.
21 Vakharia, V. and Gujar, R., (2019), "Prediction of compressive strength and portland cement composition using cross-validation and feature ranking techniques", Constr. Build. Mater, 225, 292-301. https://doi.org/10.1016/j.conbuildmat.2019.07.224.   DOI
22 Vapnik, V.N. (1995), "The nature of statistical learning theory", Springer, New York., U.S.A.
23 Al-Gemeel, A.N., Zhuge, Y. and Youssf, O. (2018), "Use of hollow glass microspheres and hybrid fibres to improve the mechanical properties of engineered cementitious composite", Constr. Build. Mater., 171, 858-870. https://doi.org/10.1016/j.conbuildmat.2018.03.172.   DOI
24 Balendran, R.V., Zhou, F.P., Nadeem, A. and Leung, A.Y.T. (2002), "Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete", Build. Environ., 37(12), 1361-1367. https://doi.org/10.1016/S0360-1323(01)00109-3.   DOI
25 Boulekbache, B., Hamrat, M., Chemrouk, M. and Amziane S. (2016), "Flexural behaviour of steel fibrereinforced concrete under cyclic loading", Constr. Build. Mater., 126, 253-262. http://doi.org/10.1016/j.conbuildmat.2016.09.035.   DOI
26 Koksal, F., Sahin, Y., Gencel, O. and Yigit, I. (2013), "Fracture energy-based optimisation of steel fibre reinforced concretes", Eng. Fract. Mech., 107, 29-37. http://doi.org/10.1016/j.engfracmech.2013.04.018.   DOI
27 Guo, Y.C., Zhang, J.H., Chen, G.M. and Xie, Z.H. (2014), "Compressive behavior of concrete structures incorporating recycled concrete aggregates, rubber crumb and reinforced with steel fibre, subjected to elevated temperatures", J. Clean. Prod., 72(2014), 193-203. http://doi.org/10.1016/j.jclepro.2014.02.036.   DOI
28 Haddadou, N, Chaid, R. and Ghernouti, Y. (2015), "Experimental study on steel fibre reinforced selfcompacting concrete incorporating high volume of marble powder", Eur. J. Environ. Civil Eng., 19(1), 48-64. https://doi.org/10.1080/19648189.2014.929537.   DOI
29 Jian-he, X., Yong-chang, G., Li-sha, L. and Zhi-hong, X. (2015), "Compressive and flexural behaviours of a new steel-fibre-reinforced recycled aggregate concrete with crumb rubber", Constr. Build. Mater., 79, 263-272. http://doi.org/10.1016/j.conbuildmat.2015.01.036.   DOI
30 Rabia, B., Daouadji, T.H. and Abderezak, R. (2021), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41-55. http://doi.org/10.12989/cme.2021.3.1.041   DOI
31 Rasmussen, C.E. and Williams, C.K.I. (2006), Gaussian Processes for Machine Learning, The MIT Press, Cambridge, U.K.
32 Sepahvand, A., Singh, B., Sihag, P., Samani, A.N., Ahmadi, H. and Nia, S.F. (2019), "Assessment of the various soft computing techniques to predict sodium absorption ratio (SAR)", ISH J. Hydraul. Eng., 1-12. http://doi.org/ 10.1080/09715010.2019.1595185.   DOI
33 Goh, A.T.C. and Goh, S.H. (2007), "Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data", Comput. Geotech., 34(5), 410-421. https://doi.org/10.1016/j.compgeo.2007.06.001.   DOI
34 Ganesan, N., Abraham, R. and Raj, S.D. (2015), "Durability characteristics of steel fibre reinforced geopolymer concrete", Constr. Build. Mater., 93(2015), 471-476. http://doi.org/10.1016/j.conbuildmat.2015.06.014.   DOI
35 Chopra, P., Sharma, R.K., Kumar, M. and Chopra, T., (2018), "Comparison of machine learning techniques for the prediction of compressive strength of concrete", Adv. Civil Eng., 5481705. http://doi.org/10.1155/2018/5481705.2.
36 Dawood, E.T. and Ramli, M. (2011), "High strength characteristics of cement mortar reinforced with hybrid fibres", Constr. Build. Mater., 25(2011), 2240-2247. http://doi.org/10.1016/j.conbuildmat.2010.11.008.   DOI
37 Deepa, C., Sathiyakumari, K. and Preamsudha, V. (2010), "Prediction of the compressive strength of high performance concrete mix using tree based modeling", Int. J. Comput. Appl., 6(5), 18-24.   DOI
38 Goldberg, Y. (2017), "Neural network methods for natural language processing", Synth. Lecture Human Lang. Technol., 10(1), 1-309. http://doi.org/10.2200/S00762ED1V01Y201703HLT037.   DOI
39 Wu, Z., Shi, C., He, W. and Wua, L. (2016), "Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete", Constr. Build. Mater., 103, 8-14. http://doi.org/10.1016/j.conbuildmat.2015.11.028.   DOI
40 Zhang, J., Wang, Q. and Wang, Z. (2017), "Properties of polyvinyl alcohol-steel hybrid fiber-reinforced composite with high-strength cement matrix", J. Mater. Civil Eng., 29(7), 04017026. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001868.   DOI
41 Zongjin, L. (2011), Advanced Concrete Technology, John Wiley and Sons.
42 Tadepalli, P.R., Mo, Y.L. and Hsu, T.T.C. (2015), "Mechanical property of steel fibre concrete", Magazine Concrete Res., 65(8), 462-474. https://doi.org/10.1680/macr.12.00077.   DOI
43 Siddique, R, Singh, M, and Jain, M. (2020), "Recycling copper slag in steel fibre concrete for sustainable construction", J. Clean Prod., 271, 122559. https://doi.org/10.1016/j.jclepro.2020.122559.   DOI
44 Singh, B., Sihag, P., Tomar, A. and Sehgad, A. (2019), "Estimation of compressive strength of high-strength concrete by random forest and M5P model tree approaches", J. Mater. Eng. Struct., 6(2019), 583-592.
45 Sounthararajan, V.M. and Sivakumar, A. (2013), "Accelerated properties of steel fibre reinforced concrete containing finer sand", ARPN J. Eng. Appl. Sci., 8(1), 57-63.
46 Sharma, N., Thakur, M.S., Goel, P.L. and Sihag, P. (2020), "A review: Sustainable compressive strength properties of concrete mix with replacement by marble powder", J. Achiev. Mater. Manuf., 98(1), 11-23. http://doi.org/10.5604/01.3001.0014.0813.   DOI