• Title/Summary/Keyword: Required Ventilation Volume

Search Result 37, Processing Time 0.022 seconds

A study on the effects of exhaust emission standards on the required ventilation rate in vehicle tunnels (차량 배출가스 규제기준이 소요환기량에 미치는 연구)

  • Kim, Hyo-Gyu;Ryu, Ji-Oh;Song, Seog-Hun;Jung, Chang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.409-420
    • /
    • 2017
  • The amount of ventilation required in making the tunnel ventilation plan is an important factor for determining the capacity of the ventilation system. The amount of pollutant emission for each type of vehicle (basic emission amount for the design of ventilation volume) for estimating the required ventilation amount is based on the 'Standard for Allowing the Emission for the car manufacturing', proposed by Ministry of Environment. However, in 2013, the Ministry of Environment announced the 'Regulations on the calculation method of total emissions from vehicles' as a regulation for calculating the pollutants emitted from vehicles. In this regulation, there are the 'Emission factors for each type of vehicle'. Therefore, it is necessary to review the application of the Regulation to the estimation of the required ventilation volume for the road tunnel. In this study, the influence of the strengthened emission regulation in 2015 caused by the case of manipulation of emission volume for the diesel vehicle on the calculation of the required ventilation volume in the road tunnel has been checked. In addition, in this study, the required ventilation volume calculated according to the Standard for Allowing the Emission for the car manufacturing revised by Ministry of Environment and "Emission factors for each type of vehicle" and that calculated according to the EURO emission standard were compared for analysis. This study has implications that it provides the basic design data for calculating the reasonable ventilation capacity of the ventilation system based on the ground for calculating the required ventilation volume.

Estimation of Ventilation Volume by Traffic Ventilation Force in Tunnel (교통환기력에 의한 터널내 환기량 추정에 관한 연구)

  • 김종호;이상칠;도연지;김신도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.273-278
    • /
    • 1995
  • This study is to estimate the ventilation volume by the traffic that originated from driving automobiles for two tunnels (Kugi tunnel and Kumhwa tunnel) that adopted natural ventilation system among tunnels of Seoul, and on the basis of which, we estimated the ventilation velume at various conditions. With the result of the estimation, we will present the basic method that can be operated with the optimum condition for the ventilation system. Estimating the predicted ventilation volume in the tennel by the pollutant concentration, we used traffic volume and CO emission data by the automobile speed and CO concentration in the tunnel. And, when we estimated the traffic ventilation volume by natural and traffic ventilation force, we used traffic volume, automobile speed, tunnel area, automobile area data and so on. As the result of simple regression between predicted ventilation volume and traffic ventilation volume, we attained the regression coefficient 0.88, and achieved the relation form that predicted ventilation volume equal 0.12x traffic ventilation volume-92, 000. Using this equation, we estimated the ventilation volume to satisfy the enviromnental standards of several space, and calculated the required volume for mechanical ventilation. Incase of Kumhwa Tunnel, there is a need of mechanical ventilation all day long to satisfy air quality standard 9 ppm for 8 hours average and 10 ppm for the indoor air quality standard of public facilities.

  • PDF

서울시내 극장내 공기조사 성적 (제4보) (극장환기에 대한 고찰)

  • 권숙표
    • YAKHAK HOEJI
    • /
    • v.2 no.1_2
    • /
    • pp.33-41
    • /
    • 1953
  • According to the results of the investigation of air condition on a movie hause in Seoul city, for the period August 1948 to August 1949, the results were considerable condition contrary to the expection due to lack of Ventilation. By the above equation, the total air ventilation volume, the avarage air volume of natural ventilation, and the air volume of artifical ventilation to be required of the seven movie hause in Seoul city are discussed (See table in page in this Journal)

  • PDF

Performance Evaluation of Multidrop Chamber Ventilation System in Apartment (공동주택내 다분기챔버형 환기시스템 적용을 통한 풍량분배 개선효과에 관한 연구)

  • Kim, Sung-Soo;Son, Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.545-552
    • /
    • 2009
  • It is common to design the duct branches where to supply the required air flow for individual room in residential apartment house. And TAB process is applied to control the designed air volume with adjusting volume dampers and/or supply diffusers after fully installing the ventilation system. This process has been resulted increasing the initial cost for the residential ventilation system because of man-hour and accessories such as volume control damper or diffuser. However it is difficult to adjust the air volume adequately in small air duct branches in residential ventilation system. The purpose of this study is to figure out the performance of Multidrop chamber coupling system for the residential ventilation system.

The Safety Assessment for Ventilation Facilities of Underground Power Plant (지하 발전소 환기설비에 대한 안전성 평가)

  • Ko, Won-Kyoung;Kang, Seung Kyu;Jeong, Young-Dae;Kim, Young Gu
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.331-332
    • /
    • 2014
  • Underground power plant is required the strict safety management and safety assessment. Because it is the high risk of explosion by characteristic of enclosed space. In case gas leak of enclosed space, the ventilation facilities is very important in order to prevent explosion by the maintain less than the LEL(lower explosive limit). Thus, Through a safety assessment of ventilation volume is to reduce the risk for ventilation facilities in Underground power plant.

  • PDF

Ventilation and energy performance evaluation of the office building with variable air volume system (변풍량시스템이 적용된 사무소건물의 환기 및 에너지성능평가)

  • Kwon, Y.L.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.100-108
    • /
    • 1999
  • Variable air volume(VAV) system designed for improving interior environmental control has steadily evolved over the last 20 years. Major advantage of VAV system is that VAV technology allows a single system to provide simultaneous heating and cooling without a seasonal changeover. Research is carried out in order to study the influence on the energy consumption and ventilation performance of two kinds of office building with a mixing ventilation system. Data required for performance evaluation in these building is obtained from the central monitoring station and by measurement.

  • PDF

A study on the effective fire and smoke control in transverse oversized exhaust ventilation (횡류식 선택대배기환기에서의 배연특성에 관한 연구)

  • Han, Sang-Pil;Jeon, Yong-Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.451-462
    • /
    • 2011
  • The smoke control system plays the most important role in securing evacuation environment when a fire occurs in road tunnels. Smoke control methods in road tunnels are classified into two categories which are longitudinal ventilation system and transverse ventilation system. In this study it is intended to review the characteristics of smoke behavior by performing numerical analysis for calculating the optimal smoke exhaust air volume with scaled-model and simulation when a fire occurs in tunnels in which transverse ventilation is applied, and for obtaining the basic data required for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions for various conditions. As a result of this study, when the critical velocity in the tunnel is 1.75 m/s and 2.5 m/s, the optimal smoke exhaust air volume has to be more than $173m^3/s$, $236m^3/s$ for the distance of the smoke moving which can limit the distance to 250 m. In addition, in case of uniform exhaust the generated smoke is effectively taken away if the two exhaust holes near the fire region are opened at the same time.

Performance Evaluation of Multidrop Chamber Ventilation System in Apartment (공동주택 적용을 위한 다분기챔버 환기 시스템의 성능평가에 관한 연구)

  • Kim, Sung Soo;Sohn, Jang yeul
    • KIEAE Journal
    • /
    • v.9 no.4
    • /
    • pp.17-22
    • /
    • 2009
  • It is common to design the duct branches where to supply the required air flow for individual room in residential apartment house. However it is difficult to adjust the air volume adequately in small air duct branches in residential ventilation system. The purpose of this study is to figure out the performance of Multidrop chamber coupling system for the residential ventilation system. The experiments were designed to simulate apartment of $84m^2$ and established multidrop chamber duct and general duct on the ceiling of the apartment. Distribution performance of air supply rate were evaluated in this experiments. As a result, distribution performance of air supply rate in the general duct is different from designed air supply rate by about 35% ~ 50% and about 10% in the multidrop chamber system. In additional the sound insulation performance of the multidrop chamber system decreased about 20% compared with general duct system. Therefore, the multidrop chamber system is considered to satisfy proper air supply rate of each room and to improve the sound insulation performance in apartment Houses.

The Experimental Study on the Efficiency of Ventilation of Korean Paper (Hanji) (한지(韓紙)의 환기성능에 관한 실험적 연구)

  • 이종원;임정명
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.482-489
    • /
    • 2004
  • The purpose of this study is to reevaluate the performance of Hanji as a architectural material. Recent studies report that one of the causes of the Sick-HouseㆍSick-Building Syndrome is due to the contaminants from interior materials and the lack of ventilation. In this study, the properties of Hanji are investigated. The major focuses of this research are (1) how efficient the Hanji is for ventilation of the house and (2) whether the usage of Hanji brings required ventilation volume to the house. According to the test results, differential pressure in the air and the amount of ventilation showed linear relationship. Test results differ from various kinds of Hanji. Since houses usually have double window system, Hanji can be used to the windows system, especially for inner part of double window system. It is suggested that the combination of Hanji windows for the inner part and glass windows for outer part is very effective, and offers a solution to improvement of indoor air quality and the lack of ventilation with passive ventilation that has less energy consumption.

Comparative study on effects of volume-controlled ventilation and pressure-limited ventilation for neonatal respiratory distress syndrome (신생아 호흡곤란 증후군에서 volume-controlled ventilation과 pressure-limited ventilation의 효과에 관한 비교연구)

  • Kim, Jae Jin;Hwang, Mun Jung;Lee, Sang Geel
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.1
    • /
    • pp.21-27
    • /
    • 2010
  • Purpose : In contrast with traditional time-cycled, pressure-limited ventilation, during volume-controlled ventilation, a nearly constant tidal volume is delivered with reducing volutrauma and the episodes of hypoxemia. The aim of this study was to compare the efficacy of pressure-regulated, volume controlled ventilation (PRVC) to Synchronized intermittent mandatory ventilation (SIMV) in VLBW infants with respiratory distress syndrome (RDS).Methods : 34 very low birth weight (VLBW) infants who had RDS were randomized to receive either PRVC or SIMV with surfactant administration : PRVC group (n=14) and SIMV group (n=20). We compared peak inspiratory pressure (PIP), duration of mechanical ventilation, and complications associated with ventilation, respectively with medical records. Results : There were no statistical differences in clinical characteristics between the groups. After surfactant administration, PIP was significantly lower during PRVC ventilation for 48hrs and accumulatevive value of decreased PIP was higher during PRVC ventilation for 24hrs (P<0.05). Duration of ventilation and incidence of complications was no significant difference. Conclusion : PRVC is the mode in which the smallest level of PIP required to deliver the preset tidal volume in VLBW infants with RDS, adaptively responding to compliance change in lung after surfactant replacement.