• Title/Summary/Keyword: Reporter vector

Search Result 143, Processing Time 0.026 seconds

Nectandrin A Enhances the BMP-Induced Osteoblastic Differentiation and Mineralization by Activation of p38 MAPK-Smad Signaling Pathway

  • Kim, Do Yeon;Kim, Go Woon;Chung, Sung Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.5
    • /
    • pp.447-453
    • /
    • 2013
  • Osteoblastic activity of nectandrin A was examined in C2C12 cells. Nectandrin A enhances the BMP-induced osteoblastic differentiation and mineralization, manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and increased calcium contents. In C2C12 cells co-transfected with expression vector encoding Smad4 and Id1-Luc reporter, nectandrin A increased Id1 luciferase activity in a concentration-dependent manner, when compared to that in BMP-2 treated cells, indicating that Smad signaling pathway is associated with nectandrin A-enhanced osteoblastic differentiation in C2C12 cells. In addition, nectandrin A activated p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and phosphorylated form of pSmad1/5/8 and alkaline phosphatase activity were both decreased when the cells were pretreated with SB203580, a p38 MAPK inhibitor, suggesting that p38 MAPK might be an upstream kinase for Smad signaling pathway. Taken together, nectandrin A enhances the BMP-induced osteoblastic differentiation and mineralization of C2C12 cells via activation of p38 MAPK-Smad signaling pathway, and it has a therapeutic potential for osteoporosis by promoting bone formation.

Molecular Characterization of Cytoskeletal Beta-Actin and its Promoter in the Javanese Ricefish Oryzias javanicus

  • Lee, Sang Yoon;Kim, Dong Soo;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.4
    • /
    • pp.317-324
    • /
    • 2012
  • We characterized the cytoskeletal beta-actin (${\beta}$-ACT) gene (actb) and its 5'-upstream regulatory region in the Javanese ricefish Oryzias javanicus. The gene and protein structures were deduced from amino acid sequences of the actb gene and conserved in the teleost lineage. The O. javanicus actb gene has common transcription factor binding motifs in its regulatory region found in teleostean orthologues. Following quantitative reverse transcription-PCR, actb gene transcripts were detected in all tissues examined; however, the basal expression levels were different. During early development, O. javanicus actb mRNA levels showed a gradual increase and peaked between late somitogenesis and the heartbeat stage. Microinjection of O. javanicus embryos with the actb gene promoter-driven red fluorescent protein (RFP) gene reporter vector showed a ubiquitous distribution of RFP signals, although most exhibited a mosaic pattern of transgene expression. A small number of microinjected embryos displayed a wide distribution of RFP signals over their entire body, which resembled the expression pattern of endogenous actb. Data from this study provide a basis to develop a transgenic system with ubiquitous expression of foreign genes in O. javanicus.

Transformation of Medicago truncatula with rip1-GUS Gene

  • Nam Young-Woo;Song Dae-Hae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.434-439
    • /
    • 2004
  • Medicago truncatula is a model plant for molecular genetic studies of legumes and plant-microbe interactions. To accelerate finding of genes that play roles in the early stages of nodulation and stress responses, a trans-genic plant was developed that contains a promoter­reporter fusion. The promoter of rip], a Rhizobium-induced peroxidase gene, was fused to the coding region of $\beta-glucuronidase (GUS)$ gene and inserted into a modified plant transformation vector, pSLJ525YN, in which the bar gene was preserved from the original plasmid but the neomycin phosphotransferase gene was replaced by a polylinker. Transformation of M. truncatula was carried out by vacuum infiltration of young seedlings with Agrobacterium. Despite low survival rates of infiltrated seedlings, three independent transformants were obtained from repeated experiments. Southern blot analyses revealed that 7 of 8 transgenic plants of the T 1 generation contained the bar gene whereas 6 $T_1$ plants contained the GUS gene. These results indicate that vacuum infiltration is an effective method for transformation of M. truncatula. The progeny seeds of the transgenic plants will be useful for mutagenesis and identification of genes that are placed upstream and may influence the expression of rip] in cellular signaling processes including nodulation.

In vivo determination of the gap2 gene promoter activity in Giardia lamblia

  • YANG Hye-Won;KIM Juri;YONG Tai-Soon;PARK Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.44 no.1 s.137
    • /
    • pp.21-26
    • /
    • 2006
  • A shuttle vector for Escherichia coli and Giardia lamblia was modified to produce a reporter plasmid, which monitors the expression of prescribed gene in G. lamblia by measuring its luciferase activity. Promoter regions of the gap2 gene, one of the genes induced during encystation, were cloned into this plasmid, and the resultant constructs were then transfected into trophozoites of G. lamblia. Transgenic trophozoites containing one of the 3 gap2-luc reporters were induced to encystation, and characterized with respect to gap2 gene expression by measuring their luciferase activities. Giardia containing a gap2-luc fusion of 112-bp upstream region showed full induction of luciferase activity during encystation.

Efficient Expression of a Carbon Starvation Promoter Activity Under Nutrient-Limited Chemostat Culture

  • KIM DAE-SUN;PARK YONG-IL;LEE HYANG BURM;KIM YOUNGJUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.678-682
    • /
    • 2005
  • The promoter region of a carbon starvation gene isolated from Pseudomonas putida was cloned and analyzed for its potential use for in situ bioremediation and bioprocessing. We constructed a recombinant plasmid pMKD101 by cloning the 0.65 kb promoter region of the gene into the promoter proving vector, pMK301, which contains the lacZ for ${\beta}$-galactosidase activity as a reporter gene. pMKD101 was transformed into the wild-type P. putida MK1, resulting in P. putida RPD101, and analyzed for ${\beta}$-galactosidase activity under different culture conditions. When RPD101 was grown on the minimal medium plus $0.1\%$ glucose as a sole carbon source in batch cultures, ${\beta}$-galactosidase activity was found to be 3.2-fold higher during the stationary phase than during the exponential phase. In chemostat cultures, ${\beta}$-galactosidase activity was found to be 3.1-fold higher at the minimal growth rate (dilution rate=$0.05\;h^{-1}$) than at the maximal growth rate (dilution rate=$0.173;h^{-1}$). The results suggest that a carbon starvation promoter can be utilized to maximize the expression of a desired gene under nutrient limitation.

Inhibition of the Jun Aminoterminal Kinase by SP600125 Blocks PMA-Induced 92kDa Type IV Collagenase Secretion (PMA 유도 제4형 단백분해효소 분비를 차단하는 SP600125에 의한 Jun Aminoterminal Kinase의 억제)

  • Shin, Min
    • Journal of Oral Medicine and Pain
    • /
    • v.26 no.2
    • /
    • pp.95-105
    • /
    • 2001
  • 제 4형 콜라젠을 분해하는 MMP-9은 조직 재생에 중요한 역할을 하기 때문에 주목받아 왔는데, 이전의 문헌들에서 PMA에 의해 이 유전자 발현이 강하게 상승발현된다고 알려져 있다. 비록 MMP-9 발현을 조절하는 PMA의 기전이 잘 밝혀지지는 않았지만, 다른 유전자발현에서의 이 phorbol ester의 효과는 c-raf-1-ERK 신호전달통로의 활성에 관해 연구되어 오고 있다. 하지만 이번 연구에서 저자는 MMP-9 발현에서 PMA의 상승효과에는 대개는 스트레스성 자극과 관련된 JNK1 의존성 신호전달과정이 또한 필요하다는 다른 가능성을 조사하였다. 그 결과 JNK 억제재중 하나인 SP 600125가 UM-SCC-1세포주에서 PMA에 의해 유도된 MMP-9 상승발현을 용량의존적으로 억제하는 것으로 나타났고 72시간동안 전처치를 한 경우에 그의 억제효과가 최대이었다. phorbol ester로 처리한 세포에 GAL4 luciferase reporter와 vector를 주입해서 조사한 결과 PMA가 c-Jun transacting 활성을 상승시켰다. 그뿐 아니라 PMA에 의한 MMP-9 촉진자 활성에는 AP-1 motif가 필요하며 이 motif에 c-Jun이 결합하는 것을 EMSA를 통해 확인하였다. 결론적으로 UM-SCC-1 세포주에서 PMA에 의한 MMP9의 증가된 발현은 이미 밝혀진 ERK 경로뿐 아니라 JNK 경로를 통한 결과임이 밝혀져 이 경로를 차단하는 방법이 또하나의 암치료 방향을 제시해주고 있다.

  • PDF

A novel technique for recombinant protein expression in duckweed (Spirodela polyrhiza) turions

  • Chanroj, Salil;Jaiprasert, Aornpilin;Issaro, Nipatha
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.156-164
    • /
    • 2021
  • Spirodela polyrhiza, from the Lemnaceae family, are small aquatic plants that offer an alternative plant-based system for the expression of recombinant proteins. However, no turion transformation protocol has been established in this species. In this study, we exploited a pB7YWG2 vector harboring the eYFP gene that encodes enhanced yellow fluorescent protein (eYFP), which has been extensively used as a reporter and marker to visualize recombinant protein localization in plants. We adopted Agrobacterium tumefaciens-mediated turion transformation via vacuum infiltration to deliver the eYFP gene to turions, special vegetative forms produced by duckweeds to endure harsh conditions. Transgenic turions regenerated several duckweed fronds that exhibited yellow fluorescent emissions under a fluorescence microscope. Western blotting verified the expression of the eYFP protein. To the best of our knowledge, this is the first report of an efficient protocol for generating transgenic S. polyrhiza expressing eYFP via Agrobacterium tumefaciens-mediated turion transformation. The ability of turions to withstand harsh conditions increases the portability and versatility of transgenic duckweeds, favoring their use in the further development of therapeutic compounds in plants.

Marine birnavirus (MABV)'s 5' terminal region of segment A acts as internal ribosome entry site (IRES)

  • Kim, So Yeon;Kim, Ki Hong
    • Journal of fish pathology
    • /
    • v.34 no.1
    • /
    • pp.17-22
    • /
    • 2021
  • Eukaryotic translation is initiated by either cap-dependent or cap-independent way, and the cap-independent translation can be initiated by the internal ribosomal entry site (IRES). In this study, to know whether the 5'UTR leader sequence of marine birnavirus (MABV) segment A and segment B can act as IRES, bicistronic vectors harboring a CMV promoter-driven red fluorescent gene (mCherry) and poliovirus IRES- or MABV's leader sequence-driven green fluorescent gene (eGFP) were constructed, then, transfected into a mammalian cell line (BHK-21 cells) and a fish cell line (CHSE-214 cells). The results showed that the poliovirus IRES worked well in BHK-21 cells, but did not work in CHSE-214 cells. In the evaluation of MABV's leader sequences, the reporter eGFP gene under the 5'UTR leader sequence of MABV's segment A was well-translated in CHSE-214 cells, indicating 5'UTR of MABV's segment A initiates translation in the cap-independent way and can be used as a fish-specific IRES system. However, the 5'UTR leader sequence of MABV's segment B did not initiate translation in CHSE-214 cells. As the precise mechanism of birnavirid IRES-mediated translation is not known, more elaborate investigations are needed to uncover why the leader sequence of segment B could not initiate translation in the present study. In addition, further studies on the host species range of MABV's segment A IRES and on the screening of other fish-specific IRESs are needed.

Effect of Protein Kinase C Inhibitor (PKCI) on Radiation Sensitivity and c-fos Transcription Activity (Protein Kinase C Inhibitor (PKCI)에 의한 방사선 민감도 변화와 c-fos Proto-oncogene의 전사 조절)

  • Choi Eun Kyung;Chang Hyesook;Rhee Yun-Hee;Park Kun-Koo
    • Radiation Oncology Journal
    • /
    • v.17 no.4
    • /
    • pp.299-306
    • /
    • 1999
  • Purpose : The human genetic disorder ataxia-telangiectasia (AT) is a multisystem disease characterized by extreme radiosensitivity. The recent identification of the gene mutated in AT, ATM, and the demonstration that it encodes a homologous domain of phosphatidylinositol 3-kinase (PI3-K), the catalytic subunit of an enzyme involved in transmitting signals from the cell surface to the nucleus, provide support for a role of this gene in signal transduction. Although ionizing radiation was known to induce c-fos transcription, nothing is known about how ATM or PKCI mediated signal transduction pathway modulates the c-fos gene transcription and gene expression. Here we have studied the effect of PKCI on radiation sensitivity and c-fos transcription in normal and AT cells. Materials and Methods: Normal (LM217) and AT (AT5BIVA) cells were transfected with PKCI expression plasmid and the overexpression and integration of PKCI was evaluated by northern blotting and polymerase chain reaction, respectively. 5 Gy of radiation was exposed to LM and AT cells transfected with PKCI expression plasmid and cells were harvested 48 hours after radiation and investigated apoptosis with TUNEL method. The c-fos transcription activity was studied by performing CAT assay of reporter gene after transfection of c-fos CAT plasmid into AT and LM cells. Results: Our results demonstrate for the first time a role of PKCI on the radiation sensitivity and c-fos expression in LM and AT cells. PKCI increased radiation induced apoptosis in LM cells but reduced apoptosis in AT cells. The basal c-fos transcription activity is 70 times lower in AT cells than that in LM cells. The c-fos transcription activity was repressed by overexpression of PKCI in LM cells but not in AT cells. After induction of c-fos by Ras protein, overexpression of PKCI repressed c-fos transcription in LM cells but not in AT cells Conclusion: Overexpression of PKCI increased radiation sensitivity and repressed c-fos transcription in LM cells but not in AT cells. The results may be a. reason of increased radiation sensitivity of AT cells. PKCI may be involved in an ionizing radiation induced signal transduction pathway responsible for radiation sensitivity and c-fos transcription. The data also provided evidence for novel transcriptional difference between LM and AT cells.

  • PDF

Differential Response of Surfactant Protein-A Genetic Variants to Dexamethasone Treatment (덱사메타손 처치에 따른 폐 표면 활성 단백질-A 유전자 변이의 반응의 차이점에 관한 연구)

  • Kim, Eul Soon;Lee, In Kyu;Oh, Myung Ho;Bae, Chong Woo
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.4
    • /
    • pp.335-339
    • /
    • 2003
  • Purpose : Surfactant protein A(SP-A) is involved in surfactant physiology and structure, and plays a major role in innate host defense and inflammatory processes in the lung. Steroid therapy is widely used for mothers who threaten to deliver prematurely and also used commonly in the management of preterm infants with chronic lung disease. Two SP-A genes(SP-A1, SP-A2) and several alleles have been characterized for each SP-A gene in human. Preliminary evidence indicates that differences may exist among alleles in response to Dexamethasone(Dexa) and that the SP-A 3'UTR plays a role in this process. We studied whether 3'UTR-mediated differences exist among the most frequently found SP-A alleles in response to Dexa. Methods : Constructs containing the 3'UTR from eight different SP-A alleles were made using luciferase as a the reporter gene. These constructs were driven by the SV40 promotor and were transfected along with a transfection control vector in H441 cells that express SP-A. The activity of the reporter gene in the presence or absence of Dexa(100 nM) treatment was measured. All the experiments for the eight SP-A alleles studied, were performed in triplicate and repeated five times. The results were normalized to the transfection control. Results : Expression of alleles of 6A3, 6A, 1A were significantly decreased in response to Dexa. Conclusion : Three UTR mediated differences exist among human SP-A variants both in the basal expression and in response to Dexa. These genotype-dependent differences may point to a need for a careful consideration of individual use of steroid treatment in the prematurely born infant.