Browse > Article
http://dx.doi.org/10.5010/JPB.2021.48.3.156

A novel technique for recombinant protein expression in duckweed (Spirodela polyrhiza) turions  

Chanroj, Salil (Department of Biotechnology, Faculty of Sciences, Burapha University)
Jaiprasert, Aornpilin (Department of Biotechnology, Faculty of Sciences, Burapha University)
Issaro, Nipatha (Division of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Burapha University)
Publication Information
Journal of Plant Biotechnology / v.48, no.3, 2021 , pp. 156-164 More about this Journal
Abstract
Spirodela polyrhiza, from the Lemnaceae family, are small aquatic plants that offer an alternative plant-based system for the expression of recombinant proteins. However, no turion transformation protocol has been established in this species. In this study, we exploited a pB7YWG2 vector harboring the eYFP gene that encodes enhanced yellow fluorescent protein (eYFP), which has been extensively used as a reporter and marker to visualize recombinant protein localization in plants. We adopted Agrobacterium tumefaciens-mediated turion transformation via vacuum infiltration to deliver the eYFP gene to turions, special vegetative forms produced by duckweeds to endure harsh conditions. Transgenic turions regenerated several duckweed fronds that exhibited yellow fluorescent emissions under a fluorescence microscope. Western blotting verified the expression of the eYFP protein. To the best of our knowledge, this is the first report of an efficient protocol for generating transgenic S. polyrhiza expressing eYFP via Agrobacterium tumefaciens-mediated turion transformation. The ability of turions to withstand harsh conditions increases the portability and versatility of transgenic duckweeds, favoring their use in the further development of therapeutic compounds in plants.
Keywords
Agrobacterium tumefaciens-mediated turion transformation; Enhanced yellow fluorescent protein; Fluorescence microscopy; Spirodela polyrhiza; Turion; Vacuum infiltration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang W, Haberer G, Gundlach H, Glasser C, Nussbaumer T, Luo MC, Lomsadze A, Borodovsky M, Kerstetter RA, Shanklin J, Byrant DW, Mockler TC, Appenroth KJ, Grimwood J, Jenkins J, Chow J, Choi C, Adam C, Cao XH, Fuchs J, Schubert I, Rokhsar D, Schmutz J, Michael TP, Mayer KF, Messing J (2014) The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun 5:3311   DOI
2 Yang J, Li G, Hu S, Bishopp A, Heenatigala PPM, Kumar S, Duan P, Yao L, Hou H (2018) A protocol for efficient callus induction and stable transformation of Spirodela polyrhiza (L.) Schleiden using Agrobacterium tumefaciens. Aquat Bot 151:80-86   DOI
3 Zhang J, Yin K, Sun J, Gao J, Du Q, Li H, Qiu JL (2018) Direct and tunable modulation of protein levels in rice and wheat with a synthetic small molecule. Plant Biotechnol J 16(2):472-481   DOI
4 Firsov A, Tarasenko I, Mitiouchkina T, Ismailova N, Shaloiko L, Vainstein A, Dolgov S (2015) High-yield expression of M2e peptide of avian influenza virus H5N1 in transgenic duckweed plants. Mol Biotechnol 57(7):653-661   DOI
5 Hillman WS (1961) The Lemnaceae, or duckweeds: A review of the descriptive and experimental literature. Bot Rev 27(2):221-287   DOI
6 Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6(13):3901-3907   DOI
7 Jusuk I, Vietz C, Raab M, Dammeyer T, Tinnefeld P (2015) Super-Resolution Imaging Conditions for enhanced yellow fluorescent Protein (eYFP) Demonstrated on DNA Origami Nanorulers. Sci Rep 5:14075   DOI
8 Krajncic B, Devide Z (1979) Flower development in Spirodela polyrrhiza (Lemnaceae). Plant Syst Evol 132(4):305-312   DOI
9 Landolt E, Kandcler R (1987). The Family of Lemnaceae -A Monographic Study. Biosystematic. Investigations in the Family of Duckweeds (Lemnaceae). Ver6ff geobot Inst ETH, Stiflung Riibel, Z~rich 2
10 Budhagatapalli N, Schedel S, Gurushidze M, Pencs S, Hiekel S, Rutten T, Kusch S, Morbitzer R, Lahaye T, Panstruga R, Kumlehn J, Hensel G (2016) A simple test for the cleavage activity of customized endonucleases in plants. Plant Methods 12:18   DOI
11 Droge W, Broer I, Puhler A (1992) Transgenic plants containing the phosphinothricin-N-acetyltransferase gene metabolize the herbicide L-phosphinothricin (glufosinate) differently from untransformed plants. Planta 187(1):142-151   DOI
12 Chhabra G, Chaudhary D, Sainger M, Jaiwal PK (2011) Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. Physiol Mol Biol Plants 17(2):129-136   DOI
13 Penna S, Sagi L, Swennen R (2002) Positive selectable marker genes for routine plant transformation. In Vitro Cell Dev Biol -Plant 38(2):125-128   DOI
14 Sikorski L, Baciak M, Bes A, Adomas B (2019) The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species. Aquat Toxicol 209:70-80   DOI
15 Krajncic B, Slekovec-Golob M (1991) Synergistic effect of GA3 and EDDHA on the promotion of flowering in the photo-periodically neutral plant Spirodela polyrrhiza (L.) Schleiden. J Plant Physiol 139(2):240-242   DOI
16 Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O'Brien JV, Chambers SA, Adams WR Jr, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2(7):603-618   DOI
17 Janakiraman V, Steinau M, McCoy SB, Trick HN (2002) Recent advances in wheat transformation. In Vitro Cell Dev Biol -Plant 38(5):404-414   DOI
18 Karimi M, Inze D, Depicker A (2002) Gateway vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7(5):193-195   DOI
19 Landolt E (1986). The family of Lemnaceae -A monographic study. Biosystematic Investigations in the family of duckweeds (Lemnaceae). Veroffentlichungen des Geobotanischen Institutes der ETH Rubel, Zurich, Switzerland 1
20 Lemon GD, Posluszny U (2000) Comparative shoot development and evolution in the Lemnaceae. Int J Plant Sci 161(5):733-748   DOI
21 Lemon GD, Posluszny U, Husband BC (2001) Potential and realized rates of vegetative reproduction in Spirodela polyrhiza, Lemna minor, and Wolffia borealis. Aquat Bot 70(1):79-87   DOI
22 Olah V, Toth G, SzoIlosi E, Kiss T (2008) Comparative study on sensitivity of different physiological properties of Spirodela polyrrhiza (L.) Schleiden to Cr(VI) treatments. Acta Biol Szeged 52:181-182
23 Zambre M, Terryn N, De Clercq J, De Buck S, Dillen W, Van Montagu M, Van Der Straeten D, Angenon G (2003) Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells. Planta 216(4):580-586   DOI
24 Ko SM, Sun HJ, Oh MJ, Song IJ, Kim MJ, Sin HS, Goh CH, Kim YW, Lim PO, Lee HY, Kim SW (2011) Expression of the protective antigen for PEDV in transgenic duckweed, Lemna minor. Hortic Environ Biotechnol 52(5):511   DOI
25 Thu PTL, Huong PT, Tien VV, Ham LH, Khanh TD (2015) Regeneration and transformation of gene encoding the hemagglutinin antigen of the H5N1 virus in frond of duckweed (Spirodela polyrhiza L.). J Agric Res 3(1)
26 Jaiprasert A (2018). Development of duckweed transformation technique for biological application PhD thesis BURAPHA UNIVERSITY
27 Wang W, Yang C, Tang X, Zhu Q, Pan K, Cai D, Hu Q, Ma D (2015) Carbon and energy fixation of great duckweed Spirodela polyrhiza growing in swine wastewater. Environ Sci Pollut Res Int 22(20):15804-15811   DOI
28 Yang GL, Fang Y, Xu YL, Tan L, Li Q, Liu Y, Lai F, Jin YL, Du AP, He KZ, Ma XR, Zhao H (2018) Frond transformation system mediated by Agrobacterium tumefaciens for Lemna minor. Plant Mol Biol 98(4-5):319-331   DOI
29 Vunsh R, Li J, Hanania U, Edelman M, Flaishman M, Perl A, Wisniewski JP, Freyssinet G (2007) High expression of transgene protein in Spirodela. Plant Cell Rep 26(9):1511-1519   DOI
30 Christou P, Ford TL, Kofron M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and Japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Nat Biotechnol 9(10):957-962   DOI
31 Rainbolt CR, Thill DC, Yenish JP, Ball DA (2004) Herbicide-resistant grass weed development in imidazolinone-resistant wheat: Weed biology and herbicide rotation. Weed Technol 18(3):860-868   DOI
32 Sambrook J, Fritsch EF, Maniatis T (1989). Molecular cloning. A laboratory manual (2nd ed) Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
33 Tan S, Evans R, Singh B (2006) Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 30(2):195-204   DOI
34 Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273(5280):1392-1395   DOI
35 Tang J, Zhang F, Cui W, Ma J (2014) Genetic structure of duckweed population of Spirodela, Landoltia and Lemna from Lake Tai, China. Planta 239(6):1299-1307   DOI
36 Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509-544   DOI
37 Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Nat Biotechnol 10(6):667-674   DOI
38 Wang W, Messing J (2012) Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed). BMC Plant Biol 12(5):5   DOI
39 Wang Y (2016) Callus induction and frond regeneration in Spirodela polyrhiza. Czech J Genet Plant Breed 52(3):114-119   DOI
40 Yamamoto YT, Rajbhandari N, Lin X, Bergmann BA, Nishimura Y AM, Stomp A (2001) Genetic transformation of duckweed Lemna gibba and Lemna minor. In Vitro Cell Dev Biol Plant 37(3):349-353   DOI
41 Boehm R, Kruse C, Voeste D, Barth S, Schnabl H (2001) A transient transformation system for duckweed (Wolffia columbiana) using Agrobacterium-mediated gene transfer. J Appl Bot Food Qual 75(3):107-111
42 Yang GL, Feng D, Liu YT, Lv SM, Zheng MM, Tan AJ (2021) Research progress of a potential bioreactor: Duckweed. Biomolecules 11(1)
43 Appenroth KJ, Borisjuk N, Lam E (2013) Telling duckweed apart: Genotyping technologies for Lemnaceae. Chin J Appl Environ Biol 19:1-10   DOI
44 Canto-Pastor A, Molla-Morales A, Ernst E, Dahl W, Zhai J, Yan Y, Meyers BC, Shanklin J, Martienssen R (2015) Efficient transformation and artificial miRNA gene silencing in Lemna minor. Plant Biol (Stuttg) 17 Supplement 1:59-65   DOI
45 Mejbel HS, Simons AM (2018) Aberrant clones: Birth order generates life history diversity in Greater duckweed, Spirodela polyrhiza. Ecol Evol 8(4):2021-2031   DOI
46 Ay Z, Mihaly R, Cserhati M, Kotai E, Pauk J (2012) The Effect of High Concentrations of glufosinate ammonium on the Yield Components of Transgenic Spring Wheat (Triticum aestivum L.) Constitutively Expressing the bar Gene. Sci World J 2012:657945