• Title/Summary/Keyword: Repolarization

Search Result 54, Processing Time 0.023 seconds

R-wave Detection Algorithm in ECG Signal Using Adaptive Refractory Period (ECG 신호에서 적응적 불응기를 이용한 R-wave 검출 알고리즘)

  • Kim, Jung-Joon;Kim, Jin-Sub;Park, Kil-Houm
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.242-250
    • /
    • 2013
  • In this paper, R-wave detection algorithm using refractory period to reflect the depolarization and repolarization of the myocardial cells of the heart is proposed. The proposed algorithm detects R-peaks using the features of R-wave and variable refractory period. First, the proposed algorithm extracts candidate R-peaks that have a relatively high potential and calculates the refractory period based on the kurtosis and potential for candidate R-peaks. Next, R-peak is determined by morphological features of the R-wave within the refractory period. In addition, due to less computation in the proposed algorithm, real-time processing is possible. The algorithm is applied to all records of the MIT-BIH arrhythmia database and the obtained results show a competitive detection rate of over 99.7%.

An R-wave Detection method in ECG Signal Using Refractory Period (ECG 신호에서 불응기를 이용한 R-파 검출 방법)

  • Kim, Jin-Sub;Kim, Jea-Soo;Kim, Jeong-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.93-101
    • /
    • 2013
  • The accurate detection of R-wave is important for other feature extraction in ECG, and R-wave has a lot of medical information about heart. Numerous R-wave detection algorithms have been studied on the ECG signal shape analysis, but it was difficult to find accurate R-wave when the shape of R-wave is similar to the shape of P-wave. This paper presents an R-wave detection method based on the refractory period that is the period of depolarization and repolarization of the cell membrane after excitation. And we also use the shape of kurtosis in the refractory period. The proposed method is validated using the ECG records of the MIT-BIH arrhythmia database. Experimental results show that the proposed method significantly outperforms other method in case of 105 and 108 record that have R-wave similar to P-wave, as well as other records.

Effects of Paroxetine on a Human Ether-a-go-go-related Gene (hERG) K+ Channel Expressed in Xenopus Oocytes and on Cardiac Action Potential

  • Hong, Hee-Kyung;Hwang, Soobeen;Jo, Su-Hyun
    • International Journal of Oral Biology
    • /
    • v.43 no.1
    • /
    • pp.43-51
    • /
    • 2018
  • $K^+$ channels are key components of the primary and secondary basolateral $Cl^-$ pump systems, which are important for secretion from the salivary glands. Paroxetine is a selective serotonin reuptake inhibitor (SSRI) for psychiatric disorders that can induce QT prolongation, which may lead to torsades de pointes. We studied the effects of paroxetine on a human $K^+$ channel, human ether-a-go-go-related gene (hERG), expressed in Xenopus oocytes and on action potential in guinea pig ventricular myocytes. The hERG encodes the pore-forming subunits of the rapidly-activating delayed rectifier $K^+$ channel ($I_{Kr}$) in the heart. Mutations in hERG reduce $I_{Kr}$ and cause type 2 long QT syndrome (LQT2), a disorder that predisposes individuals to life-threatening arrhythmias. Paroxetine induced concentration-dependent decreases in the current amplitude at the end of the voltage steps and hERG tail currents. The inhibition was concentration-dependent and time-dependent, but voltage-independent during each voltage pulse. In guinea pig ventricular myocytes held at $36^{\circ}C$, treatment with $0.4{\mu}M$ paroxetine for 5 min decreased the action potential duration at 90% of repolarization ($APD_{90}$) by 4.3%. Our results suggest that paroxetine is a blocker of the hERG channels, providing a molecular mechanism for the arrhythmogenic side effects of clinical administration of paroxetine.

T Wave Detection Algorithm based on Target Area Extraction through QRS Cancellation and Moving Average (QRS구간 제거와 이동평균을 통한 대상 영역 추출 기반의 T파 검출 알고리즘)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.450-460
    • /
    • 2017
  • T wave is cardiac parameters that represent ventricular repolarization, it is very important to diagnose arrhythmia. Several methods for detecting T wave have been proposed, such as frequency analysis and non-linear approach. However, detection accuracy is at the lower level. This is because of the overlap of the P wave and T wave depending on the heart condition. We propose T wave detection algorithm based on target area extraction through QRS cancellation and moving average. For this purpose, we detected Q, R, S wave from noise-free ECG(electrocardiogram) signal through the preprocessing method. And then we extracted P, T target area by applying decision rule for four PAC(premature atrial contraction) pattern another arrhythmia through moving average and detected T wave using RT interval and threshold of RR interval. The performance of T wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 95.32%.

Stepwise Detection of the QRS Complex in the ECG Signal (심전도 신호에서 QRS군의 단계적 검출)

  • Kim, Jeong-Hong;Lee, SeungMin;Park, Kil-Houm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.244-253
    • /
    • 2016
  • The QRS complex of ECG signal represents the depolarization and repolarization activities in the cells of ventricle. Accurate informations of $QRS_{onset}$ and $QRS_{offset}$ are needed for automatic analysis of ECG waves. In this study, using the amount of change in the QRS complex voltage values and the distance from the $R_{peak}$, we determined the junction point from Q-wave to R-wave and the junction point from R-wave to S-wave. In the next step, using the integral calculation based on the connection point, we detected $QRS_{onset}$ and $QRS_{offset}$. We use the PhysioNet QT database to evaluate the performances of the algorithm, and calculate the mean and standard deviation of the differences between onsets or offsets manually marked by cardiologists and those detected by the proposed algorithm. The experiment results show that standard deviations are under the tolerances accepted by expert physicians, and outperform the results obtained by the other algorithms.

Effects of Bay K, cAMP and Isoprenaline on the Na-Ca Exchange Current of Single Rabbit Atrial Cells (토끼 심방근에서 Na-Ca 교환 전류에 대한 Bay K, cAMP, Isoprenaline 효과)

  • Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.377-388
    • /
    • 1990
  • Ca movements during the late plateau phase in rabbit atrium implicate Na-Ca exchange. In single atrial cells isolated from the rabbit the properties of the inward current of Na-Ca exchange were investigated using the whole cell voltage clamp technique. The inward currents were recorded during repolarization following brief 2 ms depolarizing pulse to +40 mV from a holding potential of -70 mV. Followings are the results obtained: 1) When stimulated every 30 sec, the inward currents were activated and reached peak values $6{\sim}12\;ms$ after the beginning of depolarizing pulse. The mean current amplitude was 342 pA/cell. 2) The current decayed spontaneously from the peak activation and the timecourse of the relaxation showed two different phases: fast and slow phase. 3) The recovery of the inward current was tested by paired pulse of various interval. The peak current recovered exponentialy with a time course similar to that of Ca current recovery. 4) Relaxation timecourse was also affected by pulse interval and time constant was reduced almost linearly according to the decrease of pulse interval between 30 sec and 1 sec. 5) The peak inward current was increased by long prepulse stimulation, Bay K, isoprenaline or c-AMP. 6) The relaxation time constant of the inward current was prolonged by Bay K or c-AMP, and shortened by isoprenaline. From the above results, it could be concluded that increase of the calcium current potentiates and prolongs intracellular calcium transients, while shortening of the timecourse by isoprenaline or short interval stimulations might be due to the facilitation of Ca uptake by SR.

  • PDF

Open Channel Block of Kv3.1 Currents by Genistein, a Tyrosine Kinase Inhibitor

  • Choi, Bok-Hee;Park, Ji-Hyun;Hahn, Sang-June
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.71-77
    • /
    • 2006
  • The goal of this study was to analyze the effects of genistein, a widely used tyrosine kinase inhibitor, on cloned Shaw-type $K^+$ currents, Kv3.1 which were stably expressed in Chinese hamster ovary (CHO) cells, using the whole-cell configuration of patch-clamp techniques. In whole-cell recordings, genistein at external concentrations from 10 to $100{\mu}M$ accelerated the rate of inactivation of Kv3.1 currents, thereby concentration-dependently reducing the current at the end of depolarizing pulse with an $IC_{50}$ value of $15.71{\pm}0.67{\mu}M$ and a Hill coefficient of $3.28{\pm}0.35$ (n=5). The time constant of activation at a 300 ms depolarizing test pulses from -80 mV to +40 mV was $1.01{\pm}0.04$ ms and $0.90{\pm}0.05$ ms (n=9) under control conditions and in the presence of $20{\mu}M$ genistein, respectively, indicating that the activation kinetics was not significantly modified by genistein. Genistein $(20{\mu}M)$ slowed the deactivation of the tail current elicited upon repolarization to -40 mV, thus inducing a crossover phenomenon. These results suggest that drug unbinding is required before Kv3.1 channels can close. Genistein-induced block was voltage-dependent, increasing in the voltage range $(-20\'mV{\sim}0\'mV)$ for channel opening, suggesting an open channel interaction. Genistein $(20{\mu}M)$ produced use-dependent block of Kv3.1 at a stimulation frequency of 1 Hz. The voltage dependence of steady-state inactivation of Kv3.1 was not changed by $20{\mu}M$ genistein. Our results indicate that genistein blocks directly Kv3.1 currents in concentration-, voltage-, time-dependent manners and the action of genistein on Kv3.1 is independent of tyrosine kinase inhibition.

Roles of $Ca^{2+}-Activated\;K^+$ Conductances on Spontaneous Firing Patterns of Isolated Rat Medial Vestibular Nucleus Neurons

  • Chun, Sang-Woo;Jun, Jae-Woo;Park, Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • To investigate the contributions of intrinsic membrane properties to the spontaneous activity of medial vestibular nucleus (MVN) neurons, we assessed the effects of blocking large and small calcium-activated potassium channels by means of patch clamp recordings. Almost all the MVN neurons recorded in neonatal $(P13{\sim}P17)$ rat were shown to have either a single deep after-hyperpolarization (AHP; type A cells), or an early fast and a delayed slow AHP (type B cells). Among the recorded MVN cells, immature action potential shapes were found. Immature type A cell showed single uniform AHP and immature B cell showed a lack of the early fast AHP, and the delayed AHP was separated from the repolarization phase of the spike by a period of isopotentiality. Application of apamin and charybdotoxin (CTX), which selectively block the small and large calcium-activated potassium channels, respectively, resulted in significant changes in spontaneous firings. In both type A and type B cells, CTX (20 nM) resulted in a significant increase in spike frequency but did not induce bursting activity. By contrast, apamin (300 nM) selectively abolished the delayed slow AHP and induced bursting activity in type B cells. Apamin had no effect on the spike frequency of type A cells. These data suggest that there are differential roles of apamin and CTX sensitive potassium conductances in spontaneous firing patterns of MVN neurons, and these conductances are important in regulating the intrinsic rhythmicity and excitability.

  • PDF

Open channel block of Kv1.4 potassium channels by aripiprazole

  • Park, Jeaneun;Cho, Kwang-Hyun;Lee, Hong Joon;Choi, Jin-Sung;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.545-553
    • /
    • 2020
  • Aripiprazole is a quinolinone derivative approved as an atypical antipsychotic drug for the treatment of schizophrenia and bipolar disorder. It acts as with partial agonist activities at the dopamine D2 receptors. Although it is known to be relatively safe for patients with cardiac ailments, less is known about the effect of aripiprazole on voltage-gated ion channels such as transient A-type K+ channels, which are important for the repolarization of cardiac and neuronal action potentials. Here, we investigated the effects of aripiprazole on Kv1.4 currents expressed in HEK293 cells using a whole-cell patch-clamp technique. Aripiprazole blocked Kv1.4 channels in a concentration-dependent manner with an IC50 value of 4.4 μM and a Hill coefficient of 2.5. Aripiprazole also accelerated the activation (time-to-peak) and inactivation kinetics. Aripiprazole induced a voltage-dependent (δ = 0.17) inhibition, which was use-dependent with successive pulses on Kv1.4 currents without altering the time course of recovery from inactivation. Dehydroaripiprazole, an active metabolite of aripiprazole, inhibited Kv1.4 with an IC50 value of 6.3 μM (p < 0.05 compared with aripiprazole) with a Hill coefficient of 2.0. Furthermore, aripiprazole inhibited Kv4.3 currents to a similar extent in a concentration-dependent manner with an IC50 value of 4.9 μM and a Hill coefficient of 2.3. Thus, our results indicate that aripiprazole blocked Kv1.4 by preferentially binding to the open state of the channels.

2D-QSAR analysis for hERG ion channel inhibitors (hERG 이온채널 저해제에 대한 2D-QSAR 분석)

  • Jeon, Eul-Hye;Park, Ji-Hyeon;Jeong, Jin-Hee;Lee, Sung-Kwang
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.533-543
    • /
    • 2011
  • The hERG (human ether-a-go-go related gene) ion channel is a main factor for cardiac repolarization, and the blockade of this channel could induce arrhythmia and sudden death. Therefore, potential hERG ion channel inhibitors are now a primary concern in the drug discovery process, and lots of efforts are focused on the minimizing the cardiotoxic side effect. In this study, $IC_{50}$ data of 202 organic compounds in HEK (human embryonic kidney) cell from literatures were used to develop predictive 2D-QSAR model. Multiple linear regression (MLR), Support Vector Machine (SVM), and artificial neural network (ANN) were utilized to predict inhibition concentration of hERG ion channel as machine learning methods. Population based-forward selection method with cross-validation procedure was combined with each learning method and used to select best subset descriptors for each learning algorithm. The best model was ANN model based on 14 descriptors ($R^2_{CV}$=0.617, RMSECV=0.762, MAECV=0.583) and the MLR model could describe the structural characteristics of inhibitors and interaction with hERG receptors. The validation of QSAR models was evaluated through the 5-fold cross-validation and Y-scrambling test.