Browse > Article
http://dx.doi.org/10.7840/kics.2016.41.2.244

Stepwise Detection of the QRS Complex in the ECG Signal  

Kim, Jeong-Hong (Kyungpook National University. School of Computer Science and Engineering)
Lee, SeungMin (Kyungpook National University Graduate School of Electronics Engineering)
Park, Kil-Houm (Kyungpook National University Graduate School of Electronics Engineering)
Abstract
The QRS complex of ECG signal represents the depolarization and repolarization activities in the cells of ventricle. Accurate informations of $QRS_{onset}$ and $QRS_{offset}$ are needed for automatic analysis of ECG waves. In this study, using the amount of change in the QRS complex voltage values and the distance from the $R_{peak}$, we determined the junction point from Q-wave to R-wave and the junction point from R-wave to S-wave. In the next step, using the integral calculation based on the connection point, we detected $QRS_{onset}$ and $QRS_{offset}$. We use the PhysioNet QT database to evaluate the performances of the algorithm, and calculate the mean and standard deviation of the differences between onsets or offsets manually marked by cardiologists and those detected by the proposed algorithm. The experiment results show that standard deviations are under the tolerances accepted by expert physicians, and outperform the results obtained by the other algorithms.
Keywords
ECG; QRS Complex; QRS Detection; QT Database;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 R. J. Huszar, "Basic dysrhythmias: interpretation & management," Mosby, 2007.
2 H. L. Chan, W. S. Chou, S. W. Chen, S. C. Fang, C. S. Liou, and Y. S. Hwang, "Continuous and online analysis of heart rate variability," J. Med. Eng. and Technol., vol. 29, no. 5, pp. 227-234, 2005.   DOI
3 G. D. Clifford, F. Azuaje, and P. McSharry, Advanced methods and tools for ECG data analysis, Artech House, 2006.
4 B. M. Oussama, B. M. Saadi, and H. S. Zine-Eddine, "Extracting features from ECG and respiratory signals for automatic supervised classification of heartbeat using neural networks," Asian J. Inf. Technol., vol. 15, no. 1, pp. 5-11, 2016.
5 S. M. Lee, J. S. Kim, and K. H. Park, "PVC detection based on the distortion of QRS complex on ECG signal," J. KICS, vol. 40, no. 4, pp. 731-739, 2015.   DOI
6 J. J. Koo and G. S. Choi, "Performance evaluation of ECG compression algorithms using classification of signals based PQSRT wave features," J. KICS, vol. 37, no. 4, pp. 313-320, 2012.   DOI
7 S. Banerjee and M. Mitra, "Application of cross wavelet transform for ECG pattern analysis and classification," IEEE Trans. Instrumentation and Measurement, vol. 63, no. 2, pp. 326-333, 2014.   DOI
8 Q. Zhang, A. I. Manriquez, C. Medigue, Y. Papelier, and M. Sorine, "An algorithm for robust and efficient location of T-wave ends in electrocardiograms," IEEE Trans. Biomedical Eng., vol. 53, no. 12, pp. 2544-2552, 2006.   DOI
9 M. J. Mollakazemi, S. A. Atyabi, and A. Ghaffari, "Heart beat detection using a multimodal data coupling method," Physiological Measurement, vol. 36, pp. 1729-1742, 2015.   DOI
10 J. Pan, and W. Tompkins, "A real-time QRS detection algorithm," IEEE Trans. Biomedical Eng., vol. 32, no. 3, pp. 230-236, 1985.
11 M. E. Nygards and L. Sornmo, "Delineation of the QRS complex using the envelope of the ECG," Medical and Biological Eng. Comput., vol. 21, pp. 538-547, 1983.   DOI
12 J. P. Martinez, R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna, "A wavelet-based ECG delineator: Evaluation on standard databases," IEEE Trans. Biomedical Eng., vol. 51, no. 4, pp. 570-581, 2004.   DOI
13 M. Llamedo and J. P. Martinez, "Heartbeat classification using feature selection driven by database generalization criteria," IEEE Trans. Biomedical Eng., vol. 58, no. 3, pp. 616-625, 2011.   DOI
14 A. I. Manriquez and Q. Zhang, "An algorithm for QRS onset and offset detection in single lead electrocardiogram records," in Proc. 29th Annu. Int. Conf. IEEE Eng. in Medicine and Biology Soc., pp. 541-544, Lyon, France, Aug. 2007.
15 J. P. Martinez, R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna, "A wavelet-based ECG delineator: Evaluation on standard database," IEEE Trans. Biomedical Eng., vol. 51, no. 4, pp. 570-581, 2004.   DOI
16 P. Laguna, R. G. Mark, A. Goldberg, and G. B. Moody, "A database for evaluation of algorithms for measurement of QT and other waveform intervals in the ECG," Computers in Cardiology, pp. 673-676, Lund, Sweden, Sept. 1997.
17 S. O. Kim, "Arrhythmia detection using rhythm features of ECG signal," J. The Korea Soc. of Comput. and Inf., vol. 18, no. 8, pp. 131-139, 2013.   DOI
18 P. Laguna, R. Jane, and P. Caminal, "Automatic detection of wave boundaries in multilead ECG signals: Validation with the CSE database," Comput. Biomedical Res., vol. 27, no. 1, pp. 45-60, 1994.   DOI
19 J. Dumont, A. I. Hernandez, and G. Carrault, "Parameter optimization of a wavelet-based electrocardiogram delineator with an evolutionary algorithm," IEEE Computers in Cardiology, pp. 707-710, Lyon, France, Sept. 2005.
20 C. H. H. Chu and E. J. Delp, "Impulsive noise suppression and background normalization of electrocardiogram signals using morphological operators," IEEE Trans. Biomedical Eng., vol. 36, no. 2, pp. 262-273, 1989.   DOI
21 Y. C. Yeh and W. J. Wang, "QRS complexes detection for ECG signal: the difference operation method," Computer Methods and Programs in Biomedicine, vol. 91, no. 3, pp. 245-254, 2008.   DOI
22 I. S. Cho and H. S. Kwon, "Advanced R wave detection algorithm using wavelet and adaptive threshold," J. KICS, vol. 35, no. 10, pp. 840-846, 2010.