• Title/Summary/Keyword: Replication protein A

Search Result 326, Processing Time 0.022 seconds

Genome Organization of Temperate Phage 11143 from Emetic Bacillus cereus NCTC11143

  • Lee, Young-Duck;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.649-653
    • /
    • 2012
  • A temperate phage was isolated from emetic Bacillus cereus NCTC 11143 by mitomycin C and characterized by transmission electron microscopy and DNA and protein analyses. Whole genome sequencing of Bacillus phage 11143 was performed by GS-FLX. The phage has a dsDNA genome of 39,077 bp and a 35% G+C content. Bioinformatic analysis of the phage genome revealed 49 putative ORFs involved in replication, morphogenesis, DNA packaging, lysogeny, and host lysis. Bacillus phage 11143 could be classified as a member of the Siphoviridae family by morphology and genome structure. Genomic comparisons at the DNA and protein levels revealed homologous genetic modules with patterns and morphogenesis proteins similar to those of other Bacillus phages. Thus, Bacillus phages might have a mosaic genetic relationship.

Fructus Amomi Cardamomi Extract Inhibits Coxsackievirus-B3 Induced Myocarditis in a Murine Myocarditis Model

  • Lee, Yun-Gyeong;Park, Jung-Ho;Jeon, Eun-Seok;Kim, Jin-Hee;Lim, Byung-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.2012-2018
    • /
    • 2016
  • Coxsackievirus B3 (CVB3) is the main cause of acute myocarditis and dilated cardiomyopathy. Plant extracts are considered as useful materials to develop new antiviral drugs. We had previously selected candidate plant extracts, which showed anti-inflammatory effects. We examined the antiviral effects by using a HeLa cell survival assay. Among these extracts, we chose the Amomi Cardamomi (Amomi) extract, which showed strong antiviral effect and preserved cell survival in CVB3 infection. We investigated the mechanisms underlying the ability of Amomi extract to inhibit CVB3 infection and replication. HeLa cells were infected by CVB3 with or without Amomi extract. Erk and Akt activities, and their correlation with virus replication were observed. Live virus titers in cell supernatants and viral positive- and negative-strand RNA amplification were measured. Amomi extract significantly increased HeLa cell survival in different concentrations ($100-10{\mu}g/ml$). CVB3 capsid protein VP1 expression (76%) and viral protease 2A-induced eIF4G1 cleavage (70%) were significantly decreased in Amomi extract ($100{\mu}g/ml$) treated cells. The levels of positive- (20%) and negative-strand (80%) RNA were dramatically decreased compared with the control, as revealed by reverse transcription-PCR. In addition, Amomi extract improved mice survival (51% vs 26%) and dramatically reduced heart inflammation in a CVB3-induced myocarditis mouse model. These results suggested that Amomi extract significantly inhibited Enterovirus replication and myocarditis damage. Amomi may be developed as a therapeutic drug for Enterovirus.

Purification and Characterization of HCV RNA-dependent RNA Polymerase from Korean Genotype 1b Isolate: Implications for Discovery of HCV Polymerase Inhibitors

  • Kim, Jeong-Min;Lee, Mi-Kyoung;Kim, Yong-Zu
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.285-291
    • /
    • 2005
  • The nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is the viral RNA-dependent RNA polymerase (RdRp), which is the essential catalytic enzyme for the viral replication and is an appealing target for the development of new therapeutic agents against HCV infection. A small amount of serum from a single patient with hepatitis C was used to get the genome of a Korean HCV isolate. Sequence analysis of NS5B 1701 nucleotides showed the genotype of a Korean isolate to be subtype 1b. The soluble recombinant HCV NS5B polymerase lacking the C-terminal 24 amino acids was expressed and purified to homogeneity. With the highly purified NS5B protein, we established in vitro systems for RdRp activity to identify potential polymerase inhibitors. The rhodanine family compounds were found to be potent and specific inhibitors of NS5B from high throughput screening (HTS) assay utilizing the scintillation proximity assay (SPA) system. The binding mode of an inhibitor was analyzed by measuring various kinetic parameters. Lineweaver-Burk plots of the inhibitor suggested it binds not to the active site of NS5B polymerase, but to an allosteric site of the enzyme. The activity of NS5B in in vitro polymerase reactions with homopolymeric RNA requires interaction with multiple substrates that include a template/primer and ribonucleotide triphosphate. Steady-state kinetic parameter, such as Km, was determined for the ribonucleotide triphosphate. One of compounds found interacts directly with the viral polymerase and inhibits RNA synthesis in a manner noncompetitively with respect to UTP. Furthermore, we also investigated the ability of the compound to inhibit NS5B-directed viral RNA replication using the Huh7 cell-based HCV replicon system. The investigation is potentially very useful for the utility of such compounds as anti-hepatitic agents.

Preparation of Micro-/Macroporous Carbons and Their Gas Sorption Properties

  • Hwang, Yong-Kyung;Shin, Hye-Seon;Hong, Jin-Yeon;Huh, Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.377-382
    • /
    • 2014
  • Micro-/macroporous carbons (MMCs) were prepared using a hollow mesoporous silica capsule (HMSC) as a sacrificial hard template. The carbonization process after the infiltration of furfuryl alcohol into the template-free HMSC material afforded MMC materials in high yield. The hard template HMSC could be removed by HF etching without deteriorating the structure of MMC. The MMC materials were fully characterized by SEM, TEM, PXRD, XPS, and Raman spectroscopy. The replication processes were so successful that MMCs exhibited a hollow capsular structure with multimodal microporosity. Detailed textural properties of MMC materials were investigated by volumetric $N_2$ adsorption-desorption analysis at 77 K. To explore the gas sorption abilities of MMCs for other gases, $H_2$ and $CO_2$ sorption analyses were also performed at various temperatures. The multimodal MMC materials were found to be good sorbents for both $H_2$ and $CO_2$ at low pressure.

Identification and characterization of a rice MCM2 homologue required for DNA replycation

  • Cho, Jae-Han;Kim, Ho-Bang;Kim, Hyung-Sae;Choi, Sang-Bong
    • BMB Reports
    • /
    • v.41 no.8
    • /
    • pp.581-586
    • /
    • 2008
  • The pre-replication complex (pre-RC), including the core hexameric MCM2-7 complex, ensures that the eukaryotic genome is replicated only once per cell division cycle. In this study, we identified a rice $\underline{m}ini\underline{c}hromosome$ $\underline{m}aintenance$ (MCM) homologue (OsMCM2) that functionally complemented fission yeast MCM2 (CDC19) mutants. We found OsMCM2 transcript expression in roots, leaves, and seeds, although expression levels differed slightly among the organs. Likewise, the OsMCM2 protein was ubiquitously expressed, but it was downregulated when nutritients were limiting, indicating that MCM2 expression (and therefore cell cycle progression) requires adequate nutrition. Yeast two-hybrid and GST pull-down assays demonstrated that OsMCM2 interacted with the COP9 signalosome 5 (CSN5). Taken as a whole, our results indicated that OsMCM2 functions as a subunit of the rice MCM complex and interacts with CSN5 during developmental regulation.

Generation and Characterization of Cell-Permeable Greem Fluorescent Protein Mediated by the Basic Domain of Human Immunodeficiency Virus Type 1 Tat

  • Park, Jin-Seu;Kim, Kyeong-Ae;Ryu, Ji-Yoon;Choi, Eui-Yul;Lee, Kil-Soo;Choi, Soo-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.797-804
    • /
    • 2000
  • The human immunodeficiency virus type 1 (HIV-1) Tat is one of the viral gene products essential for HIV replication. The exogenous Tat protein is transduced through the plasma membrane and then accumulated in a cell. The basic domain of the Tat protein, which is rich in arginine and lysine residues and called the protein transduction domain (PTD), has been identified to be responsible for this transduction activity. To better understand the nature of the transduction mediated by this highly basic domain of HIV-1 Tat, the Green Fluorescent Protein (GFP) was expressed and purified as a fusion protein with a peptide derived from the HIV-1 Tat basic domain in Escherichia coli. The transduction of Tat-GFP into mammalian cells was then determined by a Western blot analysis and fluorescence microscopy. The cells treated with Tat-GFP exhibited dose- and time-dependent increases in their intracellular level of the protein. the effective transduction of denatured Tat-GFP into both the nucleus and the cytoplasm of mammalian cells was also demonstrated, thereby indicating that the unfolding of the transduced protein is required for efficient transduction. Accordingly, the availability of recombinant Tat-GFP can facilitate the simple and specific identification of the protein transduction mediated by the HIV-1 Tat basic domain in living cells either by fluorescence microscopy or by a fluorescence-activated cell sorter analysis.

  • PDF

A Specific Role of Ime2, Meiosis-specific Protein Kinase, in the Eary Meiotic Pathway in Saccharomyces cerevisiae (Saccharomyces cerevisiae의 감수분열 특이적 Protein Kinase인 Ime2의 역할)

  • Leem, Sun-Hee;Tak, Yon-Soo;Sunwoo, Yang-Il
    • Korean Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.258-265
    • /
    • 1999
  • Entry into meiosis in the yeast Saccharomyces cerevisiae is regulated by two major factors: the cell type MATa/MAT${\alpha}$ and the nutriational state (starvation) of the cell. The two independent regulations act through IME1and IME2 expression to initiate meiosis. IME2 encodes a meiosis-specific protein kinase, and it enabled MATa/MAT${\alpha}$ diploid cells to undergo meiosis and sporulation. The PCR mutagenesis method was applied for the isolation of thermosensitive ime2 mutants. Among sixty two mutants isolated from the phenotype of defective spore formation under the restrictive temperature, three with the most easily observed temperature-sensitive phenotype (ts ${\cdot}$ime2-11, ts ${\cdot}$ime2-12 and ts ${\cdot}$ime2-13) were selected for further study. To understand the detailed functions of IME2, we examined the defects of these mutants in the early meiotic pathway including the premeiotic DNA replication and exhibited decreased level in meiotic recombination. These results suggest that the IME2 gene plays essential role in meiotic recombination pathway as well as premeiotic DNA replication. As the result of the IME2 overexpression in ${\Delta}$mre4. moreover, it was suggested that the IME2 and MRE4 genes act on the same pathway of initiation step in meiotic recombination.

  • PDF

Inhibition of Adenovirus 36 Replication and Lipid Accumulation by Distylium racemosum

  • Kim, Hye-Ran;Park, Gyu-Nam;Jung, Bo-Kyoung;Yoon, Weon-Jong;Chang, Kyung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.492-501
    • /
    • 2018
  • Obesity is a worldwide disease and one of the major risk factors. Virus among many factors can lead to obesity. Adenovirus 36 (Ad-36) is the adipogenic virus linked with human obesity. Nevertheless, there is no drug to treat both Ad-36 infection and obesity associated with virus. For the precedent study on anti-cholesterol test, Distylium racemosum (D. racemosum), Quercus salicina (Q. salicina) and Raphiolepis indica (R. indica) were selected. This study was carried out to evaluate the anti-cholesterol effects, anti-lipid effects and inhibition of Ad-36 replication from three extracts. D. racemosum ($50{\mu}g/mL$) inhibited lipid accumulation on 3T3-L1 adipocyte. D. racemosum inhibited adipocyte differentiation through suppression of regulator peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR{\gamma}$) genes and adipocyte-specific genes such as adipocyte protein 2 (aP2). D. racemosum inhibited replication of Ad-36 at $50{\mu}g/mL$ of concentration. Therefore, the extract of D. racemosum could be a candidate for development of anti-Ad-36 and anti-obesity drugs.

Comparison of Analysis Methods for Detection of Replication Competent Virus and Functional Titers of HIV-l Based Lentivirus Vector (HIV-l 유래 렌티바이러스 벡터의 복제가능 바이러스 검출과 역가측정 분석방법 비교)

  • Chang Seok Kee;Oh Il Ung;Jeong Jayoung;Ahn Kwang Soo;Sohn Yeowon
    • YAKHAK HOEJI
    • /
    • v.49 no.3
    • /
    • pp.217-224
    • /
    • 2005
  • Human Immunodeficiency Virus type 1 (HIV-l) based lentivirus vector has demonstrated great potential as gene therapy vectors mediating efficient gene delivery and long-term transgene expression in both dividing and nondividing cells. However, for clinical studies it must be confirmed that vector preparations are safe and not contaminated by replication competent lentivirus (RCL) related to the parental pathogenic virus, HIV-l. In this study, we would like to establish the method for titration and RCL detection of lentivirus vector. The titration was determined by vector expression containing the green fluorescent protein, GFP in transduced cells. The titer was $1{\times}10^7$ Transducing Unit/ml in the GFP expression assay and $8.9{\times}10^7$ molecules/ml in the real-time PCR. Also, for the detection of RCL, we have used a combination method of PCR and p24 antigen detection. First, PBS/psi and VSV-G region in the genomic DNA of transduced cells was detected by PCR assay. Second, transfer and expression of the HIV-1 gag gene was detected by p24 ELISA. In an attempt to amplify any RCL, the transduced cells were cultured for 3 weeks (amplification phase) and the supernatant of amplified transduced cell was used for the second transduction to determine whether a true RCL was present (indicator phase). Analysis of cells and supernatant at day 6 in indicator phase were negative for PBS/psi, VSV-G, and p24 antigen. These results suggest that they are not mobilized and therefore there are no RCL in amplification phase. Thus, real-time PCR is a reliable and sensitive method for titration and RCL detection of lentivirus vector.

Sterol regulatory element-binding proteins involved in reprogramming of lipid droplet formation after rotavirus infection

  • Naveed, Ahsan;Baek, Yeong-Bin;Soliman, Mahmoud;Sharif, Muhammad;Park, Sang-Ik;Kang, Mun-Il
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.4
    • /
    • pp.195-207
    • /
    • 2021
  • Species A rotaviruses (RVAs) replicate and assemble their immature particles within electron dense compartments known as viroplasms, where lipid droplets (LDs) interact with the viroplasm and facilitate viral replication. Despite the importance of LD formation in the life cycle of RVAs, the upstream molecules modulating LD formation remain unclear. This study aimed to find out the role of sterol regulatory element-binding proteins (SREBPs) in reprogramming of LD formation after RVA infection. Here, we demonstrate that RVA infection reprograms the sterol regulatory element-binding proteins (SREBPs)-dependent lipogenic pathways in virus-infected cells, and that both SREBP-1 and -2 transactivated genes, which are involved in fatty acid and cholesterol biosynthesis, are essential for LD formation. Our results showed that pharmacological inhibition of SREBPs using AM580 and betulin and inhibition of their downstream cholesterol biosynthesis (simvastatin for HMG-CoA reductase) and fatty acid enzymes (TOFA) negatively modulated the intracellular triacylglycerides and cholesterol levels and their resulting LD and viroplasm formations. Interestingly, pharmacological inhibition of SREBPs significantly reduced RVA protein synthesis, genome replication and progeny production. This study identified SREBPs-mediated lipogenic reprogramming in RVA-infected host cells, which facilitates virus replication through LD formation and its interaction with viroplasms, suggesting that SREBPs can be a potential target for the development of efficient and affordable therapeutics against RVA infection.