• Title/Summary/Keyword: Replacement Policy

Search Result 383, Processing Time 0.028 seconds

Delay Attenuation LFU (DA-LFU) Cache Replacement Policy to Improve Hit Rates in CCN (CCN에서 적중률 향상을 위한 지연감쇠 LFU(DA-LFU) 캐시 교체 정책)

  • Ban, Bin;Kwon, Tae-Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.3
    • /
    • pp.59-66
    • /
    • 2020
  • Content Centric Network(CCN) with architecture that is completely different from traditional host-based networks has emerged to address problems such as the explosion of traffic load in the current network. Research on cache replacement policies is very active to improve the performance of CCN with the characteristics that all routers cache on the network. Therefore, this paper proposes a cache replacement policy suitable for situations in which popularity is constantly changing, taking into account the actual network situation. In order to evaluate the performance of the proposed algorithm, we experimented in an environment where the popularity of content is constantly changing, and confirmed that we are superior to the existing replacement policy through comparing hit rates and analyzing server load.

A Working-set Sensitive Page Replacement Policy for PCM-based Swap Systems

  • Park, Yunjoo;Bahn, Hyokyung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2017
  • Due to the recent advances in Phage-Change Memory (PCM) technologies, a new memory hierarchy of computer systems with PCM is expected to appear. In this paper, we present a new page replacement policy that adopts PCM as a high speed swap device. As PCM has limited write endurance, our goal is to minimize the amount of data written to PCM. To do so, we defer the eviction of dirty pages in proportion to their dirtiness. However, excessive preservation of dirty pages in memory may deteriorate the page fault rate, especially when the memory capacity is not enough to accommodate full working-set pages. Thus, our policy monitors the current working-set size of the system, and controls the deferring level of dirty pages not to degrade the system performances. Simulation experiments show that the proposed policy reduces the write traffic to PCM by 160% without performance degradations.

Preventive Policy With Minor Failure Under Age and Periodic Replacement (경미한 고장을 수반하는 시스템에 대한 노화 및 예방적 교체 정책)

  • Lee, Jinpyo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.78-89
    • /
    • 2022
  • The purpose of this study was to propose useful suggestion by analyzing preventive replacement policy under which there are minor and major failure. Here, major failure is defined as the failure of system which causes the system to stop working, however, the minor failure is defined as the situation in which the system is working but there exists inconvenience for the user to experience the degradation of performance. For this purpose, we formulated an expected cost rate as a function of periodic replacement time and the number of system update cycles. Then, using the probability and differentiation theory, we analyzed the cost rate function to find the optimal points for periodic replacement time and the number of system update cycles. Also, we present a numerical example to show how to apply our model to the real and practical situation in which even under the minor failure, the user of system is not willing to replace or repair the system immediately, instead he/she is willing to defer the repair or replacement until the periodic or preventive replacement time. Optimal preventive replacement timing using two variables, which are periodic replacement time and the number of system update cycles, is provided and the effects of those variables on the cost are analyzed.

Optimal Spare Provisioning for Group Replacement Policy (경제적인 그룹교체보전을 위한 최적 예비품 재고수준의 결정)

  • Yoo, Young Kwan;Park, Roh Gook
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.9 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • In this paper, a jointly optimal group replacement and spare provisioning policy is presented. Most maintenance policies assume that the spare inventory is always available, but in practice the maintenance schedule is affected by the availability of spare inventory. We present a maintenance-inventory model which jointly optimizes the group replacement interval and spare ordering quantity. Group replacement policy is used when a group of units are put in operation simultaneously. The operating fleet is replaced altogether at a predetermined number of units are failed. A sufficient level of spare inventory is carried to perform a number of group replacement. A cost rate expression which considers the group maintenance cost and inventory holding cost is derived and a heuristic method for searching the optimum value of decision variables is suggested. Numerical examples demonstrate the analytical results and the performance of the presented model.

  • PDF

Optimal Periodic Replacement Policy Under Discrete Time Frame (이산 시간을 고려한 시스템의 교체와 수리 비용 최적화 연구)

  • Lee, Jinpyo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • Systems such as database and socal network systems have been broadly used, and their unexpected failure, with great losses and sometimes a social confusion, has received attention in recent years. Therefore, it is an important issue to find optimal maintenance plans for such kind of systems from the points of system reliability and maintaining cost. However, it is difficult to maintain a system during its working cycle, since stopping works might incur users some troubles. From the above viewpoint, this paper discusses minimal repair maintenance policy with periodic replacement, while considering the random working cycles. The random working cycle and periodic replacement policies with minimal repair has been discussed in traditional literatures by usually analyzing cases for the nonstopping works. However, maintenance can be more conveniently done at discrete time and even during the working cycle in real applications. So, we propose that periodic replacement is planned at discrete times while considering the random working cycle, and moreover provide a model in which system, with a minimal repair at failures between replacements, is replaced at the minimum of discrete times KT and random cycles Y. The average cost rate model is used to determine the optimal number of periodic replacement.

Remote Cache Replacement Policy using Processor Locality in Multi-Processor System (다중 프로세서 시스템에서 프로세서 지역성을 이용한 원격 캐쉬 교체 정책)

  • Han Sang Yoon;Kwak Jong Wook;Jhang Seong Tae;Jhon Chu Shik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.541-556
    • /
    • 2005
  • The memory access latency of the system has been a primary factor of performance degradation in single-processor system and multi-processor system. The remote memory access latency takes a lot of overhead over the local memory access latency especially in the distributed shared-memory system. To resolve this problem, the multi-level cache architecture that contains a remote cache in the multi-processor system has been proposed. In this paper, we propose a new cache replacement policy that improves the performance of the multi-processor system with the remote cache. If the multi-level cache keeps the multi-level inclusion(MLI) property and uses the LRU(Least Recently Used) cache replacement policy, the LRU information of the higher-level cache(a processor cache) would be different with that of the lower-level cache(a remote cache). In this situation, the replacement of a remote cache line can induce the exchange of a processor cache line that is used by the processor. It is a main factor of performance degradation in a whole system. To alleviate this disadvantage of the LRU replacement polity, the new policy analyses tht processor's remote memory access pattern of each node and uses this information to reduce the number of invalidations of the useful cache line in the higher-level cache. The new replacement policy of the remote cache can improve the performance by $3.5\%$ in maximum and $2.5\%$ in average on SPLASH-2 benchmarks, compared to the general LRU cache replacement policy.

Preventive Maintenance Policy Following the Expiration of Extended Warranty Under Replacement-Repair Warranty (교체-수리보증 하에서 연장된 보증이 종료된 이후의 예방보전정책)

  • Jung, Ki Mun
    • Journal of Applied Reliability
    • /
    • v.14 no.2
    • /
    • pp.122-128
    • /
    • 2014
  • In this paper, we consider the periodic preventive maintenance model for a repairable system following the expiration of extended warranty under replacement-repair warranty. Under the replacement-repair warranty, the failed system is replaced or minimally repaired by the manufacturer at no cost to the user. Also, under extended warranty, the failed system is minimally repaired by the manufacturer at no cost to the user during the original extended warranty period. As a criterion of the optimality, we utilize the expected cost rate per unit time during the life cycle from the user's perspective. And then we determine the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the optimal periodic preventive maintenance policy is given for Weibull distribution case.

Performance Analysis of Adaptive Partition Cache Replacement using Various Monitoring Ratios for Non-volatile Memory Systems

  • Hwang, Sang-Ho;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • In this paper, we propose an adaptive partition cache replacement policy and evaluate the performance of our scheme using various monitoring ratios to help lifetime extension of non-volatile main memory systems without performance degradation. The proposal combines conventional LRU (Least Recently Used) replacement policy and Early Eviction Zone (E2Z), which considers a dirty bit as well as LRU bits to select a candidate block. In particular, this paper shows the performance of non-volatile memory using various monitoring ratios and determines optimized monitoring ratio and partition size of E2Z for reducing the number of writebacks using cache hit counter logic and hit predictor. In the experiment evaluation, we showed that 1:128 combination provided the best results of writebacks and runtime, in terms of performance and complexity trade-off relation, and our proposal yielded up to 42% reduction of writebacks, compared with others.

Optimum Inspection and Replacement Policy in Redundant System

  • Yun, Won Young;Cha, Myung Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.2
    • /
    • pp.78-85
    • /
    • 1991
  • In this paper, an inspection and replacement policy in a redundant system is considered. It is assumed that the state of the redundant system is known by inspection. When the system is inspected, it is preventively replaced only if the number of failed units exceeds the predetermined limit. Otherwise, the system is inspected after a inspection interval which depends on the number of failed units. We obtain the optimal number of redundant units, inspection intervals and replacement limit minimizing the expected cost rate.

  • PDF

Optimal Replacement Policy for Stepdown Warrantied System with Minimal Repair (응급수리(應急修理)가 가능(可能)한 단계별(段階別) 사후보증제품(事後保證製品)의 최적교체정책(最適交替正策))

  • Kim, Won-Jung;Lee, Geun-Hui
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.13 no.2
    • /
    • pp.59-63
    • /
    • 1987
  • An age replacement policy is considered for a system under a stepdown warranty. It is assumed that only minimal repairs are performed for failures occurred before age T.A unique optimal value of T which minimiges the expected cost rate is obtained. The cases of the free replacement warranty, prorata warranty and hybrid warranty are also considered and some numerical examples are given.

  • PDF