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Abstract—Due to the recent advances in Phage-
Change Memory (PCM) technologies, a new memory 
hierarchy of computer systems with PCM is expected 
to appear. In this paper, we present a new page 
replacement policy that adopts PCM as a high speed 
swap device. As PCM has limited write endurance, 
our goal is to minimize the amount of data written to 
PCM. To do so, we defer the eviction of dirty pages in 
proportion to their dirtiness. However, excessive 
preservation of dirty pages in memory may 
deteriorate the page fault rate, especially when the 
memory capacity is not enough to accommodate full 
working-set pages. Thus, our policy monitors the 
current working-set size of the system, and controls 
the deferring level of dirty pages not to degrade the 
system performances. Simulation experiments show 
that the proposed policy reduces the write traffic to 
PCM by 160% without performance degradations.    
 
Index Terms—Phase-change memory, working-set, 
replacement policy, virtual memory, CLOCK    

I. INTRODUCTION 

Due to the wide speed gap between DRAM and hard 
disk drives, the primary goal of virtual memory systems 
has been the minimization of page fault frequency. 
However, with the recent advances in fast storage 

technologies such as flash memory and PCM (Phase-
Change Memory), the extremely large speed gap has 
become narrow [1]. The typical access time of flash 
memory is less than 50 milliseconds, and thus the speed 
gap between storage and memory is reduced to three 
orders of magnitude. This trend is accelerated by the 
emergence of PCM, of which the access time is about 1-
5x and 5-25x slower than DRAM in read and write 
operations, respectively. 

Actually, PCM was considered as a replacement of 
DRAM memory due to its various advantages such as 
low-power consumption, high density, and byte-
addressability [2]. However, PCM has weaknesses to 
substitute DRAM memory in its entirety as its access 
time is relatively slower compared to DRAM and it has 
limited write endurance of 106–108. Thus, PCM is 
recently considered as a high-speed secondary storage 
medium as well as far memory that is to be used along 
with DRAM [3-5].  

In this paper, we adopt PCM as a high-speed swap 
device as shown in Fig. 1 and propose a new page 
replacement policy for PCM-based swap systems. 
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Fig. 1. A DRAM memory and PCM swap architecture. 
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Although PCM provides high performance and byte-
addressability, its write operation is slow and it 
accommodates only limited endurance cycles. To cope 
with this situation, our policy tracks the dirtiness of a 
page at the granularity of a sub-page and defers the 
eviction of dirty pages in proportion to their dirtiness. To 
do so, we use a circular list in selecting a victim page and 
overlook dirty pages although they have not been 
accessed recently. However, excessive preservation of 
dirty pages in memory may deteriorate the page fault rate, 
especially when the memory capacity is not enough. 
Thus, our policy monitors the current working-set size of 
the system, and controls the deferring level of dirty pages 
not to degrade the system performances. Simulation 
experiments show that the proposed policy reduces the 
write traffic to PCM by 160% without performance 
degradations. 

The remainder of this paper is organized as follows. 
Section II explains some background of this research. 
Section III describes the proposed replacement policy for 
PCM-based swap systems. Section IV presents the 
experimental results, and finally Section V concludes the 
paper. 

II. BACKGROUNDS 

1. Phase-change Memory Technologies 
 
PCM stores data by making use of a material called 

GST. GST has two different phases called amorphous 
and crystalline, which can be set by controlling heating 
time and temperature. As each state provides different 
resistance when the electric current is passed, data can be 
differentiated by reading the resistance on the cell. While 
detecting the resistive value on the cell is fast, changing 
the phase in a cell takes longer, and hence a write 
operation is slower than a read operation in PCM. The 
endurance limit, that is, the number of writes possible on 
a PCM cell currently ranges 106–108. As this limitation is 
not sufficient for harnessing PCM as main memory, 
methods to use it in conjunction with a DRAM buffer 
have been proposed [6]. As a storage device, however, 
this endurance limitation is not a serious issue when 
considering the fact that MLC NAND only allows 
around 104 writes per cell.  

Comparing memory technologies with respect to 

capacity, PCM is expected to exceed DRAM, and even 
NAND flash memory. DRAM is hard to fabricate beyond 
20 nm and NAND flash memory has almost reached its 
scalability limit. In case of NAND flash memory, when 
the cells are smaller than 20 nm, it is no longer cost-
effective as the cost of patterning is too large. Due to 
these reasons, V-NAND Flash and 3D-DDR3 DRAM 
attempt to scale the capacity by leveraging the 3D 
stacking technology rather than scaling down the chip 
size [7, 8]. In contrast, it is expected that PCM will have 
stable characteristics in 5 nm node [9]. In 2012, Micron 
and Samsung announced 45 nm 1 Gb PCM and 8 Gb 20 
nm PCM, respectively. Considering that recent NAND 
flash on the market are on 25 nm cells, it would not be 
too long before PCM finds its place in storage systems.  

In addition to the advances in micro-fabrication 
processes, multilevel cell (MLC) technologies are also 
accelerating the density enhancement of PCM. Although 
most PCM prototypes are being produced as a single-
level cell (SLC), which considers only the two crystalline 
and amorphous states, recent research has demonstrated 
that additional intermediate states are representable 
enabling the MLC feature with PCM [9]. MLC can store 
multiple bits in a cell by choosing multiple levels of 
electrical charge. This allows PCM to have an order of 
magnitude higher density than other nonvolatile memory 
media, such as FeRAM (ferroelectric RAM) and MRAM 
(magnetic RAM), that are structurally hard to provide 
MLC. Thus, major semiconductor manufacturers, 
including Samsung and Intel, are now preparing for the 
commercialization of PCM technologies. 

In reality, PCM hardware technology has already 
reached a certain level of maturity. Specifically, PCM 
has been commercialized and also equipped in certain 
types of smartphones. Patents published recently by Intel 
describe a detailed micro-architecture to support PCM as 
memory and/or a storage device, implying that PCM 
based computer architectures are imminent [10, 11]. Two 
major PCM manufacturers, Micron and Samsung, are 
forecasting that the primary interfaces for PCM is likely 
to be DIMM and PCI-e rather than other block I/O 
interfaces. This is because existing block I/O interfaces 
such as SATA or SAS are not fast enough to support 
high-performance PCM devices, limiting the full 
advantages that PCM conveys.  
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2. Replacement Policies for Virtual Memory Systems 
 
Replacement policies for virtual memory systems 

usually exploit the temporal locality property, which 
refers to the fact that a more recently accessed page is 
more likely to be accessed again. In terms of the page 
fault ratio, the LRU (Least Recently Used) replacement 
algorithm is known to be optimal for access patterns with 
this property [12]. LRU sorts all the pages in memory by 
their last access time, and replaces the oldest page 
whenever free page frames are needed. It is the most 
popular replacement policy in various caching systems 
including file system buffer cache as it performs well but 
has only constant time and space overheads.  

Nevertheless, LRU has a critical weakness in virtual 
memory systems. On every memory access, LRU needs 
to move a page to the most recently accessed position in 
the list. This involves some list manipulations which 
cannot be handled by the MMU (Memory Management 
Unit) hardware. Thus, list implementation of LRU is 
generally used in file system buffer cache, in which list 
manipulation by operating systems is possible on every 
accesses. Though LRU can also be implemented by 
hardware, this is not feasible in virtual memory systems 
as it should maintain the time-stamp of each page and 
update it upon every memory accesses. Thus, hardware 
implementation of LRU is usually adopted in on-chip 
cache, which has limited associativity.  

Due to this reason, the CLOCK algorithm has been 
widely used in virtual memory systems to efficiently 
approximate the workings of LRU [13]. Instead of 
sorting pages in order of their last access time, CLOCK 
only monitors whether a page has recently been accessed 
or not with one reference bit per page. Whenever a page 
is accessed (i.e., read or written), the reference bit is set 
to one by the MMU hardware. CLOCK resets this bit to 
zero periodically to ensure that it has been accessed at 
least once from the duration of the last reset. To do this, 
CLOCK maintains pages in a circular list. Whenever free 
page frames are needed, CLOCK sequentially scans 
through the pages in the circular list, starting from the 
current position, that is, next to the position of the last 
evicted page. This scan continues until a page with a 
reference bit of zero is found and that page is then 
replaced. For every page with the reference bit of one in 
the course of the scan, CLOCK clears the reference bit to 

zero, without removing the page from the list.  
The reference bit of each page indicates whether that 

page has recently been accessed or not; and a page which 
is not accessed until the clock-hand comes round to that 
page again is certain to be replaced. Even though 
CLOCK does not replace the oldest page, it replaces a 
page that has not been accessed recently, so that temporal 
locality is exploited to some extent. In addition to this, 
since it does not require any list manipulation on memory 
hit, CLOCK is suitable for virtual memory systems. 

III. A WORKING-SET SENSITIVE PAGE 

REPLACEMENT POLICY 

Fig. 1 shows the target system architecture of the 
proposed replacement policy called WS-CLOCK 
(Working-Set Sensitive CLOCK). As shown in the figure, 
WS-CLOCK is adopted as a page replacement policy in 
the main memory layer on top of the PCM swap device. 
Main memory transfers data to/from LLC (Last Level 
Cache) in a sub-page granularity, while communicates 
with the PCM swap device in a page granularity.  

For each page, WS-CLOCK maintains a reference bit 
to indicate whether the page is recently accessed or not. 
A page also needs a dirty bit to represent whether it has 
been modified after entering memory so that changes can 
be reflected to the swap device when it is evicted. WS-
CLOCK maintains a dirty bit for each sub-page to 
quantify the expected write traffic by the eviction of each 
page. The dirty bit is set when an LLC cache block is 
written back to the memory page. The dirty bit of 1 
indicates that the sub-page should be flushed to PCM 
when the page containing this sub-page is replaced from 
main memory as it has been modified while resident in 
memory. 

WS-CLOCK selects a replacement victim based on the 
state of the reference bit and dirty bits of each page to 
reduce the number of page faults and the write traffic to 
PCM simultaneously. The reference bit of a page is set to 
1 when the page is accessed, and the dirty bit of an 
accessed sub-page is set to 1 when the access is write.  

Similar to CLOCK, WS-CLOCK also uses a clock-
hand that traverses in one direction over the circular list 
of pages. Whenever replacement is needed to 
accommodate a new page, WS-CLOCK checks the 
reference bit and the dirtiness of the page pointed by the 
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clock-hand. (Note that the dirtiness of a page is defined 
as the number of dirty sub-pages within the page.) If the 
reference bit is 1, WS-CLOCK resets it to 0, and the 
clock-hand is advanced to the next page. Otherwise, WS-
CLOCK investigates whether the page is dirty. In WS-
CLOCK, a dirty page can be deferred to be evicted for a 
certain number of clock cycles even though the page’s 
reference bit is 0. To do this, WS-CLOCK maintains the 
deferring count of each page. If it does not exceed the 
deferring level given to the page, the clock hand is 
advanced to the next page. This step is repeated until 
WS-CLOCK finds a victim page.  

WS-CLOCK assigns different deferring levels to dirty 
pages depending on their dirtiness. That is, a dirtier page 
has a higher deferring level. Let x be the number of dirty 
sub-pages in a page. Then, the function f defines the 
deferring level of a dirty page in proportion to the 
dirtiness of the page. We define f as a monotonic 
increasing function to maintain dirtier pages longer in 

memory. 
However, excessive preservation of dirty pages in 

memory may deteriorate the page fault rate, especially 
when the memory capacity is not enough to 
accommodate full working-sets. To find an appropriate 
deferring level for a given memory status, we perform 
some preliminary experiments. The experiments are 
conducted with the virtual memory access traces of four 
Linux applications: freecell a game, gedit a text editor, 
kghostview a PDF file viewer, and xmms a music player. 
Characteristics of each trace are listed in Table 1. In the 
experiments, the page size is set to 4 KB and the sub-
page size is set to 512 bytes. 

Fig. 2 and 3 show the total number of page faults and 
the total write traffic to PCM as the function f is varied. 
The memory size is set to 10% and 30% of the memory 
footprint for each workload, respectively. As shown in 
the figures, a higher deferring level reduces the total 
write traffic to PCM while the performance is degraded. 
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Fig. 2. Total page faults and total writes as f(x) is varied (memory size is set to 10% of footprint). 
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Fig. 3. Total page faults and total writes as f(x) is varied (memory size is set to 30% of footprint). 
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This indicates that there is a trade-off relation between 
the total number of page faults and the total write traffic 
to PCM. This implies that the optimal deferring level 
cannot be simply fixed since it depends on workloads 
and system status. Thus, our policy monitors the current 
working-set size of the system, and controls the deferring 
level of dirty pages not to degrade the system 
performances. For example, when the current working-
set size of the system is large, WS-CLOCK keeps the 
deferring level low to focus on reducing page faults for 
the overall system performances. In contrast, when the 
available memory space in the system is sufficient (i.e., 
small working-set), WS-CLOCK maintains a high 
deferring level to focus on reducing write traffic to PCM.  

The system status can be monitored by the difference 
of page fault rates between the current system and a 
system with some additional memory. Though this is not 
a simple problem in online memory management, we can 
estimate it by the Belady’s lifetime function, which is 
well-known for approximating the hit ratio of references 
as the memory size is varied. In this paper, we modify 
the original function to model the page fault rate of the 
system. With the memory size i, the page fault Ai can be 
estimated by 

 
 Ai = c * i-k (1) 

 
where c and k are control parameters. The control 
parameters determine the degree of temporal locality; as 
c becomes small or k becomes large, the degree of 
temporal locality increases. Algorithm 1 shows each step 
of WS-CLOCK. 

IV. PERFORMANCE EVALUATIONS 

In this section, we present the performance evaluation 
results to assess the effectiveness of WS-CLOCK. We 
compare WS-CLOCK with CLOCK, CAR, CART, 

CFCLOCK, CRAW, and CLOCK-W. CLOCK is a 
traditional policy that considers the recency of references 
to select a victim page. CAR considers both recency and 
frequency of references by making use of two different 
CLOCK lists and adjusts their sizes through virtual 
pages; CART improves CAR by applying temporal 
filtering [14]. CFCLOCK also uses a CLOCK list to 
capture recency but it preferentially evicts clean pages 
for a certain range of the list in order to reduce write 
traffic to storage [15]. CRAW separately maintains 
CLOCK lists for read and write operations to consider 
the different eviction cost of the two operations [16]. 
CLOCK-W behaves identical to CLOCK except for the 
use of dirty bits instead of reference bits in order to 
consider the recency of write operations [3]. We can 
classify the aforementioned policies into two groups. 
One including CFCLOCK, CLOCK-W, CRAW, and 
WS-CLOCK takes into account whether a page has been 
modified or not after entering memory. That is, these 
policies consider the asymmetric eviction cost of dirty 
pages that should be written to storage before their 
eviction and clean pages that can simply be discarded. 
The other group including CLOCK, CAR, and CART 
does not consider the eviction cost when selecting a 
replacement victim but focuses only on the re-reference 
likelihood of pages. 

Table 1. Characteristics of each workload 

Memory Reference Frequency 
Workload Memory 

Usage(KB) Total Read Write 
freecell 10,080 490,175 430,135 60,040 
gedit 14,460 1,733,763 1,600,941 132,822 

kghostview 17,390 1,546,135 1,442,595 103,540 
xmms 8,050 1,168,939 190,697 978,242 

 
 

Algorithm 1 Working-Set Sensitive CLOCK 
1: p is the page pointed by clock-hand 
2: procedure WS-CLOCK( ) 
3:   while reference_bit(p) or !IS_VICTIM(p) do 
4:     if reference_bit(p) is 1 then 
5:       reference_bit(p) = 0; 
6:     else 
7:       deferring_count(p) ++; 
8:     end if 
9:     advance the clock-hand; 
10:   end while  
11:  
12: procedure IS_VICTIM(p) 
13: Expiration = # of dirty sub-pages * coefficient 
14: if deferring_count(p) > Expiration then 
15:   return 1; 
16:     else return 0;  
17:     end if 
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1. Experimental Setup 
 
Traces used in our experiments were extracted by the 

Cachegrind tools of Valgrind 3.2.3 toolset [17, 18]. We 
capture the virtual memory access traces from four 
applications used on Linux Xwindows, namely, the 
freecell game, the gedit text editor, the kghostview PDF 
file viewer, and the xmms music player. We filter out 
memory references that are accessed directly from the 
CPU cache memory and also reflect the write-back 
property of the cache memory. The characteristics of 
these traces are described in Table 1. In the experiments, 
the page size is set to 4 KB and the sub-page size is set to 
512 bytes by which a page is composed of 8 sub-pages. 
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(a) Total page faults under 10% memory 
 

(b) Total page faults under 30% memory 
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(c) Total write traffic under 10% memory 
 

(d) Total write traffic under 30% memory 
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(e) Total elapsed time under 10% memory (f) Total elapsed time under 30% memory 

Fig. 5. Comparison of replacement policies with respect to page faults, write traffic, and total elapsed time. 
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Fig. 4. Coefficient for the deferring level as the system status
changes. 
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2. Experimental Results 
 
Fig. 4 shows the coefficient of the function f as time 

progresses and the system status changes. In this 
experiment, the total memory size is set to 20% of the 
smallest footprint among running applications. We 
control the working-set size by varying the number of 
running applications to 1, 2, 3, 1, 4, and 4 as time 
progresses. As shown in the figure, the deferring level 
becomes low as the working-set size becomes large and 
vice versa.  

Fig. 5 shows the number of page faults, write traffic, 
and elapsed time for different replacement policies when 
the memory size is 10% and 30% of the total memory 
footprint, respectively. 10% represents the situation that 
the system does not have enough memory when 
considering the applications’ footprint. In contrast, 30% 
represents a relatively large memory capacity. As shown 
in the figure, WS-CLOCK reduces write traffic to PCM 
significantly in comparison with CLOCK, CAR, and 
CART that do not consider write references. This is 
because WS-CLOCK delays the eviction of dirty pages 
aggressively. CFCLOCK, CRAW, and CLOCK-W also 
take into account the dirtiness of pages, and thus they 
reduce write traffic similar to WS-CLOCK. However, 
they do not consider the dynamic change of system 
situations, and thus they increase page fault counts when 
the memory size is not sufficient. This also leads to the 
degradation of total elapsed time. WS-CLOCK resolves 
this problem by monitoring the system status and 
controlling the deferring level of dirty pages adaptively. 

Another noteworthy result in our experiments is that 
CLOCK-W reduces much more write traffic than WS-
CLOCK. This is because CLOCK-W checks the 
reference recency of pages by dirty bits instead of 
reference bits in order to estimate future write operations, 
thereby maintaining pages likely to be re-written in 
memory aggressively. However, it significantly increases 
page faults as it ignores read operations.  

In summary, WS-CLOCK reduces write traffic to 
PCM by 160% on average and up to 286% in comparison 
with CLOCK. 

VI. CONCLUSIONS 

In this paper, we proposed a working-set sensitive 

page replacement policy, called WS-CLOCK, for the 
PCM-based swap systems. WS-CLOCK reduces write 
traffic to PCM by deferring the eviction of dirty pages in 
proportion to their dirtiness and controls the deferring 
level depending on the system status. We showed that 
WS-CLOCK reduces write traffic to PCM by an average 
of 160% and up to 286% compared to CLOCK without 
performance degradations.  
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