
JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 ISSN(Print) 1598-1657
https://doi.org/10.5573/JSTS.2017.17.1.007 ISSN(Online) 2233-4866

Manuscript received Oct. 18, 2016; accepted Feb. 3, 2017
A part of this work was presented in Korean Conference of
Semiconductors, Seoul in Republic of Korea, Feb. 2016.
Department of Computer Science & Engineering, EWHA Womans
University, Seoul 120-750, Korea
E-mail : bahn@ewha.ac.kr

A Working-set Sensitive Page Replacement Policy
for PCM-based Swap Systems

Yunjoo Park and Hyokyung Bahn

Abstract—Due to the recent advances in Phage-
Change Memory (PCM) technologies, a new memory
hierarchy of computer systems with PCM is expected
to appear. In this paper, we present a new page
replacement policy that adopts PCM as a high speed
swap device. As PCM has limited write endurance,
our goal is to minimize the amount of data written to
PCM. To do so, we defer the eviction of dirty pages in
proportion to their dirtiness. However, excessive
preservation of dirty pages in memory may
deteriorate the page fault rate, especially when the
memory capacity is not enough to accommodate full
working-set pages. Thus, our policy monitors the
current working-set size of the system, and controls
the deferring level of dirty pages not to degrade the
system performances. Simulation experiments show
that the proposed policy reduces the write traffic to
PCM by 160% without performance degradations.

Index Terms—Phase-change memory, working-set,
replacement policy, virtual memory, CLOCK

I. INTRODUCTION

Due to the wide speed gap between DRAM and hard
disk drives, the primary goal of virtual memory systems
has been the minimization of page fault frequency.
However, with the recent advances in fast storage

technologies such as flash memory and PCM (Phase-
Change Memory), the extremely large speed gap has
become narrow [1]. The typical access time of flash
memory is less than 50 milliseconds, and thus the speed
gap between storage and memory is reduced to three
orders of magnitude. This trend is accelerated by the
emergence of PCM, of which the access time is about 1-
5x and 5-25x slower than DRAM in read and write
operations, respectively.

Actually, PCM was considered as a replacement of
DRAM memory due to its various advantages such as
low-power consumption, high density, and byte-
addressability [2]. However, PCM has weaknesses to
substitute DRAM memory in its entirety as its access
time is relatively slower compared to DRAM and it has
limited write endurance of 106–108. Thus, PCM is
recently considered as a high-speed secondary storage
medium as well as far memory that is to be used along
with DRAM [3-5].

In this paper, we adopt PCM as a high-speed swap
device as shown in Fig. 1 and propose a new page
replacement policy for PCM-based swap systems.

CPU

L1 D-cacheL1 I-cache

L2 cache

Last Level Cache

DRAM memory

PCM swap device

Fig. 1. A DRAM memory and PCM swap architecture.

8 YUNJOO PARK et al : A WORKING-SET SENSITIVE PAGE REPLACEMENT POLICY FOR PCM-BASED SWAP SYSTEMS

Although PCM provides high performance and byte-
addressability, its write operation is slow and it
accommodates only limited endurance cycles. To cope
with this situation, our policy tracks the dirtiness of a
page at the granularity of a sub-page and defers the
eviction of dirty pages in proportion to their dirtiness. To
do so, we use a circular list in selecting a victim page and
overlook dirty pages although they have not been
accessed recently. However, excessive preservation of
dirty pages in memory may deteriorate the page fault rate,
especially when the memory capacity is not enough.
Thus, our policy monitors the current working-set size of
the system, and controls the deferring level of dirty pages
not to degrade the system performances. Simulation
experiments show that the proposed policy reduces the
write traffic to PCM by 160% without performance
degradations.

The remainder of this paper is organized as follows.
Section II explains some background of this research.
Section III describes the proposed replacement policy for
PCM-based swap systems. Section IV presents the
experimental results, and finally Section V concludes the
paper.

II. BACKGROUNDS

1. Phase-change Memory Technologies

PCM stores data by making use of a material called

GST. GST has two different phases called amorphous
and crystalline, which can be set by controlling heating
time and temperature. As each state provides different
resistance when the electric current is passed, data can be
differentiated by reading the resistance on the cell. While
detecting the resistive value on the cell is fast, changing
the phase in a cell takes longer, and hence a write
operation is slower than a read operation in PCM. The
endurance limit, that is, the number of writes possible on
a PCM cell currently ranges 106–108. As this limitation is
not sufficient for harnessing PCM as main memory,
methods to use it in conjunction with a DRAM buffer
have been proposed [6]. As a storage device, however,
this endurance limitation is not a serious issue when
considering the fact that MLC NAND only allows
around 104 writes per cell.

Comparing memory technologies with respect to

capacity, PCM is expected to exceed DRAM, and even
NAND flash memory. DRAM is hard to fabricate beyond
20 nm and NAND flash memory has almost reached its
scalability limit. In case of NAND flash memory, when
the cells are smaller than 20 nm, it is no longer cost-
effective as the cost of patterning is too large. Due to
these reasons, V-NAND Flash and 3D-DDR3 DRAM
attempt to scale the capacity by leveraging the 3D
stacking technology rather than scaling down the chip
size [7, 8]. In contrast, it is expected that PCM will have
stable characteristics in 5 nm node [9]. In 2012, Micron
and Samsung announced 45 nm 1 Gb PCM and 8 Gb 20
nm PCM, respectively. Considering that recent NAND
flash on the market are on 25 nm cells, it would not be
too long before PCM finds its place in storage systems.

In addition to the advances in micro-fabrication
processes, multilevel cell (MLC) technologies are also
accelerating the density enhancement of PCM. Although
most PCM prototypes are being produced as a single-
level cell (SLC), which considers only the two crystalline
and amorphous states, recent research has demonstrated
that additional intermediate states are representable
enabling the MLC feature with PCM [9]. MLC can store
multiple bits in a cell by choosing multiple levels of
electrical charge. This allows PCM to have an order of
magnitude higher density than other nonvolatile memory
media, such as FeRAM (ferroelectric RAM) and MRAM
(magnetic RAM), that are structurally hard to provide
MLC. Thus, major semiconductor manufacturers,
including Samsung and Intel, are now preparing for the
commercialization of PCM technologies.

In reality, PCM hardware technology has already
reached a certain level of maturity. Specifically, PCM
has been commercialized and also equipped in certain
types of smartphones. Patents published recently by Intel
describe a detailed micro-architecture to support PCM as
memory and/or a storage device, implying that PCM
based computer architectures are imminent [10, 11]. Two
major PCM manufacturers, Micron and Samsung, are
forecasting that the primary interfaces for PCM is likely
to be DIMM and PCI-e rather than other block I/O
interfaces. This is because existing block I/O interfaces
such as SATA or SAS are not fast enough to support
high-performance PCM devices, limiting the full
advantages that PCM conveys.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 9

2. Replacement Policies for Virtual Memory Systems

Replacement policies for virtual memory systems

usually exploit the temporal locality property, which
refers to the fact that a more recently accessed page is
more likely to be accessed again. In terms of the page
fault ratio, the LRU (Least Recently Used) replacement
algorithm is known to be optimal for access patterns with
this property [12]. LRU sorts all the pages in memory by
their last access time, and replaces the oldest page
whenever free page frames are needed. It is the most
popular replacement policy in various caching systems
including file system buffer cache as it performs well but
has only constant time and space overheads.

Nevertheless, LRU has a critical weakness in virtual
memory systems. On every memory access, LRU needs
to move a page to the most recently accessed position in
the list. This involves some list manipulations which
cannot be handled by the MMU (Memory Management
Unit) hardware. Thus, list implementation of LRU is
generally used in file system buffer cache, in which list
manipulation by operating systems is possible on every
accesses. Though LRU can also be implemented by
hardware, this is not feasible in virtual memory systems
as it should maintain the time-stamp of each page and
update it upon every memory accesses. Thus, hardware
implementation of LRU is usually adopted in on-chip
cache, which has limited associativity.

Due to this reason, the CLOCK algorithm has been
widely used in virtual memory systems to efficiently
approximate the workings of LRU [13]. Instead of
sorting pages in order of their last access time, CLOCK
only monitors whether a page has recently been accessed
or not with one reference bit per page. Whenever a page
is accessed (i.e., read or written), the reference bit is set
to one by the MMU hardware. CLOCK resets this bit to
zero periodically to ensure that it has been accessed at
least once from the duration of the last reset. To do this,
CLOCK maintains pages in a circular list. Whenever free
page frames are needed, CLOCK sequentially scans
through the pages in the circular list, starting from the
current position, that is, next to the position of the last
evicted page. This scan continues until a page with a
reference bit of zero is found and that page is then
replaced. For every page with the reference bit of one in
the course of the scan, CLOCK clears the reference bit to

zero, without removing the page from the list.
The reference bit of each page indicates whether that

page has recently been accessed or not; and a page which
is not accessed until the clock-hand comes round to that
page again is certain to be replaced. Even though
CLOCK does not replace the oldest page, it replaces a
page that has not been accessed recently, so that temporal
locality is exploited to some extent. In addition to this,
since it does not require any list manipulation on memory
hit, CLOCK is suitable for virtual memory systems.

III. A WORKING-SET SENSITIVE PAGE

REPLACEMENT POLICY

Fig. 1 shows the target system architecture of the
proposed replacement policy called WS-CLOCK
(Working-Set Sensitive CLOCK). As shown in the figure,
WS-CLOCK is adopted as a page replacement policy in
the main memory layer on top of the PCM swap device.
Main memory transfers data to/from LLC (Last Level
Cache) in a sub-page granularity, while communicates
with the PCM swap device in a page granularity.

For each page, WS-CLOCK maintains a reference bit
to indicate whether the page is recently accessed or not.
A page also needs a dirty bit to represent whether it has
been modified after entering memory so that changes can
be reflected to the swap device when it is evicted. WS-
CLOCK maintains a dirty bit for each sub-page to
quantify the expected write traffic by the eviction of each
page. The dirty bit is set when an LLC cache block is
written back to the memory page. The dirty bit of 1
indicates that the sub-page should be flushed to PCM
when the page containing this sub-page is replaced from
main memory as it has been modified while resident in
memory.

WS-CLOCK selects a replacement victim based on the
state of the reference bit and dirty bits of each page to
reduce the number of page faults and the write traffic to
PCM simultaneously. The reference bit of a page is set to
1 when the page is accessed, and the dirty bit of an
accessed sub-page is set to 1 when the access is write.

Similar to CLOCK, WS-CLOCK also uses a clock-
hand that traverses in one direction over the circular list
of pages. Whenever replacement is needed to
accommodate a new page, WS-CLOCK checks the
reference bit and the dirtiness of the page pointed by the

10 YUNJOO PARK et al : A WORKING-SET SENSITIVE PAGE REPLACEMENT POLICY FOR PCM-BASED SWAP SYSTEMS

clock-hand. (Note that the dirtiness of a page is defined
as the number of dirty sub-pages within the page.) If the
reference bit is 1, WS-CLOCK resets it to 0, and the
clock-hand is advanced to the next page. Otherwise, WS-
CLOCK investigates whether the page is dirty. In WS-
CLOCK, a dirty page can be deferred to be evicted for a
certain number of clock cycles even though the page’s
reference bit is 0. To do this, WS-CLOCK maintains the
deferring count of each page. If it does not exceed the
deferring level given to the page, the clock hand is
advanced to the next page. This step is repeated until
WS-CLOCK finds a victim page.

WS-CLOCK assigns different deferring levels to dirty
pages depending on their dirtiness. That is, a dirtier page
has a higher deferring level. Let x be the number of dirty
sub-pages in a page. Then, the function f defines the
deferring level of a dirty page in proportion to the
dirtiness of the page. We define f as a monotonic
increasing function to maintain dirtier pages longer in

memory.
However, excessive preservation of dirty pages in

memory may deteriorate the page fault rate, especially
when the memory capacity is not enough to
accommodate full working-sets. To find an appropriate
deferring level for a given memory status, we perform
some preliminary experiments. The experiments are
conducted with the virtual memory access traces of four
Linux applications: freecell a game, gedit a text editor,
kghostview a PDF file viewer, and xmms a music player.
Characteristics of each trace are listed in Table 1. In the
experiments, the page size is set to 4 KB and the sub-
page size is set to 512 bytes.

Fig. 2 and 3 show the total number of page faults and
the total write traffic to PCM as the function f is varied.
The memory size is set to 10% and 30% of the memory
footprint for each workload, respectively. As shown in
the figures, a higher deferring level reduces the total
write traffic to PCM while the performance is degraded.

6000

7000

8000

9000

10000

11000

12000

60000

64000

68000

72000

76000

80000

84000

To
ta

l w
rit

es

To
ta

l p
ag

e
fa

ul
ts

f (x)

Page Faults

Write

10000

14000

18000

22000

26000

30000

220000

225000

230000

235000

240000

245000

250000

To
ta

l w
rit

es

To
ta

l p
ag

e
fa

ul
ts

f (x)

Page Faults

Write

10000

14000

18000

22000

26000

30000

34000

288000

290000

292000

294000

296000

298000

300000

To
ta

l w
rit

es

To
ta

l p
ag

e
fa

ul
ts

f (x)

Page Faults

Write

124000

125000

126000

127000

128000

129000

130000

40000

45000

50000

55000

60000

65000

To
ta

l w
rit

es

To
ta

l p
ag

e
fa

ul
ts

f (x)

Page Faults

Write

(a) freecell (b) gedit (c) kghostview (d) xmms

Fig. 2. Total page faults and total writes as f(x) is varied (memory size is set to 10% of footprint).

3000

4000

5000

6000

7000

8000

0

4000

8000

12000

16000

20000

24000

To
ta

l w
rit

es

To
ta

l p
ag

e
fa

ul
ts

f (x)

Page Faults

Write

5000

6000

7000

8000

9000

10000

11000

12000

20000

24000

28000

32000

36000

40000

To
ta

l w
rit

es

To
ta

l p
ag

e
fa

ul
ts

f (x)

Page Faults

Write

0

2000

4000

6000

8000

10000

12000

14000

16000

50000

52000

54000

56000

58000

60000

62000

64000

To
ta

l w
rit

es

To
ta

l p
ag

e
fa

ul
ts

f (x)

Page Faults

Write

2000

4000

6000

8000

10000

12000

4000

5000

6000

7000

8000

9000

10000

To
ta

l w
rit

es

To
ta

l p
ag

e
fa

ul
ts

f (x)

Page Faults

Write

(a) freecell (b) gedit (c) kghostview (d) xmms

Fig. 3. Total page faults and total writes as f(x) is varied (memory size is set to 30% of footprint).

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 11

This indicates that there is a trade-off relation between
the total number of page faults and the total write traffic
to PCM. This implies that the optimal deferring level
cannot be simply fixed since it depends on workloads
and system status. Thus, our policy monitors the current
working-set size of the system, and controls the deferring
level of dirty pages not to degrade the system
performances. For example, when the current working-
set size of the system is large, WS-CLOCK keeps the
deferring level low to focus on reducing page faults for
the overall system performances. In contrast, when the
available memory space in the system is sufficient (i.e.,
small working-set), WS-CLOCK maintains a high
deferring level to focus on reducing write traffic to PCM.

The system status can be monitored by the difference
of page fault rates between the current system and a
system with some additional memory. Though this is not
a simple problem in online memory management, we can
estimate it by the Belady’s lifetime function, which is
well-known for approximating the hit ratio of references
as the memory size is varied. In this paper, we modify
the original function to model the page fault rate of the
system. With the memory size i, the page fault Ai can be
estimated by

 Ai = c * i-k (1)

where c and k are control parameters. The control
parameters determine the degree of temporal locality; as
c becomes small or k becomes large, the degree of
temporal locality increases. Algorithm 1 shows each step
of WS-CLOCK.

IV. PERFORMANCE EVALUATIONS

In this section, we present the performance evaluation
results to assess the effectiveness of WS-CLOCK. We
compare WS-CLOCK with CLOCK, CAR, CART,

CFCLOCK, CRAW, and CLOCK-W. CLOCK is a
traditional policy that considers the recency of references
to select a victim page. CAR considers both recency and
frequency of references by making use of two different
CLOCK lists and adjusts their sizes through virtual
pages; CART improves CAR by applying temporal
filtering [14]. CFCLOCK also uses a CLOCK list to
capture recency but it preferentially evicts clean pages
for a certain range of the list in order to reduce write
traffic to storage [15]. CRAW separately maintains
CLOCK lists for read and write operations to consider
the different eviction cost of the two operations [16].
CLOCK-W behaves identical to CLOCK except for the
use of dirty bits instead of reference bits in order to
consider the recency of write operations [3]. We can
classify the aforementioned policies into two groups.
One including CFCLOCK, CLOCK-W, CRAW, and
WS-CLOCK takes into account whether a page has been
modified or not after entering memory. That is, these
policies consider the asymmetric eviction cost of dirty
pages that should be written to storage before their
eviction and clean pages that can simply be discarded.
The other group including CLOCK, CAR, and CART
does not consider the eviction cost when selecting a
replacement victim but focuses only on the re-reference
likelihood of pages.

Table 1. Characteristics of each workload

Memory Reference Frequency
Workload Memory

Usage(KB) Total Read Write
freecell 10,080 490,175 430,135 60,040
gedit 14,460 1,733,763 1,600,941 132,822

kghostview 17,390 1,546,135 1,442,595 103,540
xmms 8,050 1,168,939 190,697 978,242

Algorithm 1 Working-Set Sensitive CLOCK
1: p is the page pointed by clock-hand
2: procedure WS-CLOCK()
3: while reference_bit(p) or !IS_VICTIM(p) do
4: if reference_bit(p) is 1 then
5: reference_bit(p) = 0;
6: else
7: deferring_count(p) ++;
8: end if
9: advance the clock-hand;
10: end while
11:
12: procedure IS_VICTIM(p)
13: Expiration = # of dirty sub-pages * coefficient
14: if deferring_count(p) > Expiration then
15: return 1;
16: else return 0;
17: end if

12 YUNJOO PARK et al : A WORKING-SET SENSITIVE PAGE REPLACEMENT POLICY FOR PCM-BASED SWAP SYSTEMS

1. Experimental Setup

Traces used in our experiments were extracted by the

Cachegrind tools of Valgrind 3.2.3 toolset [17, 18]. We
capture the virtual memory access traces from four
applications used on Linux Xwindows, namely, the
freecell game, the gedit text editor, the kghostview PDF
file viewer, and the xmms music player. We filter out
memory references that are accessed directly from the
CPU cache memory and also reflect the write-back
property of the cache memory. The characteristics of
these traces are described in Table 1. In the experiments,
the page size is set to 4 KB and the sub-page size is set to
512 bytes by which a page is composed of 8 sub-pages.

0

5

10

15

20

25

30

35

40

45

50

freecell gedit kghostview xmms

To
ta

l p
ag

e
fa

ul
ts

 (1
00

00
)

workload

clock car cart cfclock craw clock-w wsclock

0

2

4

6

8

10

12

freecell gedit kghostview xmms

To
ta

l p
ag

e
fa

ul
ts

 (1
00

00
)

workload

clock car cart cfclock craw clock-w wsclock

(a) Total page faults under 10% memory

(b) Total page faults under 30% memory

0

20

40

60

80

100

120

freecell gedit kghostview xmms

To
ta

l w
rit

e
tra

ffi
c

(M
B

)

workload

clock car cart cfclock craw clock-w wsclock

0

2

4

6

8

10

12

14

16

freecell gedit kghostview xmms

To
ta

l w
rit

e
tra

ffi
c

(M
B

)

workload

clock car cart cfclock craw clock-w wsclock

(c) Total write traffic under 10% memory

(d) Total write traffic under 30% memory

0

500

1000

1500

2000

2500

3000

3500

4000

freecell gedit kghostview xmms

To
ta

l e
la

ps
ed

 t
im

e
(m

s)

workload

clock car cart cfclock craw clock-w wsclock

0

100

200

300

400

500

600

700

800

900

freecell gedit kghostview xmms

To
ta

l e
la

ps
ed

 t
im

e
(m

s)

workload

clock car cart cfclock craw clock-w wsclock

(e) Total elapsed time under 10% memory (f) Total elapsed time under 30% memory

Fig. 5. Comparison of replacement policies with respect to page faults, write traffic, and total elapsed time.

0

1

2

3

4

0 40 80 120 160 200 240

C
oe

ff
ic

ie
nt

 (d
ef

er
rin

g
le

ve
l)

Logical time (x1000)

Fig. 4. Coefficient for the deferring level as the system status
changes.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 13

2. Experimental Results

Fig. 4 shows the coefficient of the function f as time

progresses and the system status changes. In this
experiment, the total memory size is set to 20% of the
smallest footprint among running applications. We
control the working-set size by varying the number of
running applications to 1, 2, 3, 1, 4, and 4 as time
progresses. As shown in the figure, the deferring level
becomes low as the working-set size becomes large and
vice versa.

Fig. 5 shows the number of page faults, write traffic,
and elapsed time for different replacement policies when
the memory size is 10% and 30% of the total memory
footprint, respectively. 10% represents the situation that
the system does not have enough memory when
considering the applications’ footprint. In contrast, 30%
represents a relatively large memory capacity. As shown
in the figure, WS-CLOCK reduces write traffic to PCM
significantly in comparison with CLOCK, CAR, and
CART that do not consider write references. This is
because WS-CLOCK delays the eviction of dirty pages
aggressively. CFCLOCK, CRAW, and CLOCK-W also
take into account the dirtiness of pages, and thus they
reduce write traffic similar to WS-CLOCK. However,
they do not consider the dynamic change of system
situations, and thus they increase page fault counts when
the memory size is not sufficient. This also leads to the
degradation of total elapsed time. WS-CLOCK resolves
this problem by monitoring the system status and
controlling the deferring level of dirty pages adaptively.

Another noteworthy result in our experiments is that
CLOCK-W reduces much more write traffic than WS-
CLOCK. This is because CLOCK-W checks the
reference recency of pages by dirty bits instead of
reference bits in order to estimate future write operations,
thereby maintaining pages likely to be re-written in
memory aggressively. However, it significantly increases
page faults as it ignores read operations.

In summary, WS-CLOCK reduces write traffic to
PCM by 160% on average and up to 286% in comparison
with CLOCK.

VI. CONCLUSIONS

In this paper, we proposed a working-set sensitive

page replacement policy, called WS-CLOCK, for the
PCM-based swap systems. WS-CLOCK reduces write
traffic to PCM by deferring the eviction of dirty pages in
proportion to their dirtiness and controls the deferring
level depending on the system status. We showed that
WS-CLOCK reduces write traffic to PCM by an average
of 160% and up to 286% compared to CLOCK without
performance degradations.

ACKNOWLEDGMENT

This work was supported by the Basic Science
Research program through the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (No. 2016R1A2B4015750).

REFERENCES

[1] E. Lee and H. Bahn, “Caching Strategies for High
Performance Storage Media,” ACM Transactions
on Storage, Vol. 10, No. 3, 2014.

[2] P. Zhou, B. Zhao, J. Yang, Y. Zhang, “A durable
and energy efficient main memory using phase
change memory technology,” ACM SIGARCH
Computer Architecture News, Vol. 37, No. 3, pp.
14-23, 2009.

[3] Y. Park and H. Bahn, “Management of Virtual
Memory Systems under High Performance PCM-
based Swap Devices,” Proc. of the 39th IEEE
Computer Software and Applications Conference
(COMPSAC), Vol. 2, 2015.

[4] M. K. Qureshi, V. Srinivasan, and J. A. Rivers,
“Scalable high performance main memory system
using phase-change memory technology,” ACM
SIGARCH Computer Architecture News, Vol. 37,
No. 3, pp. 24-33, 2009.

[5] E. Lee, J. E. Jang, T. Kim, and H. Bahn, “On-
demand snapshot: An efficient versioning file
system for phase-change memory,” IEEE
Transactions on Knowledge and Data Engineering,
Vol. 25, No. 12, pp. 2841-2853, 2013.

[6] S. Lee, H. Bahn, and S. H. Noh, “CLOCK-DWF: A
Write-History-Aware Page Replacement Algorithm
for Hybrid PCM and DRAM Memory
Architectures,” IEEE Transactions on Computers,
Vol. 63, No. 9, pp. 2187-2200, 2014.

14 YUNJOO PARK et al : A WORKING-SET SENSITIVE PAGE REPLACEMENT POLICY FOR PCM-BASED SWAP SYSTEMS

[7] C, Weis, N. Wehn, L. Igor, and L. Benini, “Design
space exploration for 3d-stacked drams,” Proc. of
Design Automation & Test in Europe, pp.1-6, 2011.

[8] J. Elliot, and E. S. Jung, “Ushering in the 3D
Memory Era with V-NAND,” Proc. of Flash
Memory Summit, pp. 1-14, 2013.

[9] C. D. Wright et al., “Can We Reach Tbit/sq.in.
Storage Densities with Phase-Change Media?”
Proc. of European Phase Change and Ovonics
Symposium (EPCOS), 2006.

[10] B. Nale, R. K. Ramanujan, M. P. Swaminathan, T.
Thomas, and T. Polepeddi, “Memory Channel that
Supports near Memory and Far Memory Access,”
US 9342453, Intel Corporation, 2013.

[11] R. K. Ramanujan, R. Agarwal, and G. J. Hinton,
“Apparatus and Method for Implementing a Multi-
level Memory Hierarchy Having Different
Operating Modes,” US 20130268728 A1, Intel
Corporation, 2013.

[12] E. G. Coffman and P. J. Denning, Operating
Systems Theory, Prentice-Hall, pp.241-283, 1973.

[13] R. W. Carr and J. L. Hennessy, “WSCLOCK—a
simple and effective algorithm for virtual memory
management,” Proc. of the 8th ACM SIGOPS
Operating Systems Review, Vol. 15, No. 5, pp.87-
95, 1981.

[14] S. Bansal and D. S. Modha, “CAR: Clock with
Adaptive Replacement,” Proc. of the 3rd USENIX
Conference on File and Storage Technologies
(FAST), pp. 187-200, 2004.

[15] S, Park, D. Jung, J. Kang, J. Kim, and J. Lee,
“CFLRU: a replacement algorithm for flash
memory,” Proc. of the International Conference on
Compilers, Architecture and Synthesis for
Embedded Systems, pp. 234-241, ACM, 2006.

[16] H. Lee and H. Bahn, “Characterizing virtual
memory write references for efficient page
replacement in NAND flash memory,” Proc. of
IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systems, pp. 1-10, 2009.

[17] Valgrind, http://valgrind.org/
[18] N. Nethercote and J. Seward, “Valgrind: A

program supervision framework,” Electronic Notes
in Theoretical Computer Science, Vol. 89, No. 2,
2003.

Yunjoo Park received the BS degree
in computer science and engineering
from Ewha Womans University in
2015. She is currently a MS
candidate of computer science and
engineering at Ewha Womans
University, Korea. Her research

interests include operating systems, storage systems,
embedded systems, and real-time systems.

Hyokung Bahn received the BS, MS,
and PhD degrees in computer science
from Seoul National University, in
1997, 1999, and 2002, respectively.
He is currently a full professor of
computer engineering at Ewha
University, Republic of Korea. His

research interests include operating systems, storage
systems, embedded systems, and real-time systems. He
received the Best Paper Awards at the USENIX
Conference on File and Storage Technologies in 2013.

