• 제목/요약/키워드: Repaired Column

검색결과 42건 처리시간 0.025초

Numerical modelling of FRP strengthened RC beam-column joints

  • Mahini, Seyed S.;Ronagh, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • 제32권5호
    • /
    • pp.649-665
    • /
    • 2009
  • This paper reports part of a comprehensive research study conducted at the University of Queensland on the ability of CFRP web-bonded systems in strengthening an exterior beam-column joint subjected to monotonic loads. One 1/2.2 scaled plain and four CFRP repaired/retrofitted joints subjected to monotonic loads were analysed using the nonlinear finite-element program ANSYS and the results were calibrated against experiments. The ANSYS model was employed in order to account for tension stiffening in concrete after cracking and a modified version of the Hognestad's model was used to model the concrete compressive strength. The stress-strain properties of main steel bars were modelled using multilinear isotropic hardening model and the FRPs were modelled as anisotropic materials. A perfect bond was assumed as nodes were shared between adjacent elements irrespective of their type. Good agreement between the numerical predictions and the experimental observation of the failure mechanisms for all specimens were observed. Closeness of these results proved that the numerical analysis can be used by design engineers for the analysis of web-bonded FRP strengthened beam-column joints with confidence.

재보수-보강된 철근콘크리트 보-기둥 접합부의 구조특성 (Structural Characteristics of Reinforced Concrete Beam-Column Joints Repaired and Restrengthening)

  • 조창호;김정섭
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권2호
    • /
    • pp.231-238
    • /
    • 2003
  • 지진에 의해 피해를 입은 철근콘크리트 건축물을 재사용이 가능하도록 보수-보강을 실시하여 구조적으로 안전성을 확보하게 되는데 이러한 보수-보강이 부적절하게 시공되었거나, 재지진을 받아 구조내력이 크게 감소된다면 다시 보수-보강을 할 수 밖에 없다. 본 연구에서는 지진 발생시 가장 우려되는 보-기둥 접합부를 실험 대상으로 선정하여, 시험체에 1차 동적하중과 2차 동적하중을 작용시킨 후 각각 보수-보강을 실시한 다음 구조특성 및 하중속도에 따른 보강성능을 검토하여 재보수-보강의 타당성을 규명하였다.

4각형 고강도 콘크리트 기둥 단면 변형을 통한 CFS Jacketing 보강방법 개발 (Development of CFS Jacketing Retrofit Method for Rectangular High Strength Concrete Columns by Cross Sectional Shape Modification)

  • 이종길;김장호;박석균;김진근
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권6호
    • /
    • pp.153-161
    • /
    • 2010
  • 1970년대에 콘크리트를 기반으로 지어진 많은 구조물과 빌딩은 안전성과 사용성을 고려하여 무수히 많은 연구를 현재까지 진행해 왔으나, 설계강도 보다 낮은 최대강도를 보이고 있다. 현재 노후화된 콘크리트 구조물들에 대한 다양한 보수 보강 공법이 개발되어 적용되고 있지만 기존 연구들은 구조물의 특성에 대해서는 고려하지 않고, 단지 기존 부재와 보수 재료의 부착에 관한 연구와 기존 부재를 효과적으로 보강하기 위한 새로운 방법을 개발하는 연구는 미흡한 실정이다. 따라서 본 연구는 보수 보강 재료를 이용한 효율적인 강도증진 방법에 대한 연구, 보강 재료와 기존 부재 사이의 거동에 대해 부족했던 연구를 보완하고자 한다. 또한 고강도 콘크리트는 높은 압축강도를 발현하기 때문에 부재의 단면을 축소시킬 뿐만 아니라 구조물의 자중 또한 감소시킬 수 있으므로 거대한 구조물 건설에 사용되고 있다. 고강도 콘크리트의 사용이 점차 증가하는 추세이지만 고강도 콘크리트를 이용한 구조물의 보수 보강에 대한 방법 연구 역시 미진한 실정이다. 따라서 본 연구에서는 효과적인 고강도 콘크리트 기둥에 대한 보수 보강 방법을 개발하고자 한다. 본 연구에서는 사각단명 형상을 가진 기둥을 팔각단면으로 형상 변형을 통해 CFS로 보수 보강하여 단면 형상이 변함에 따른 효과를 파악하고, CFS로 보강된 고강도 콘크리트(HSC) 기둥의 강도 증대 효과와 파괴 거동에 대해 파악하고자 한다.

Rapid retrofit of substandard short RC columns with buckled longitudinal bars using CFRP jacketing

  • Marina L. Moretti
    • Earthquakes and Structures
    • /
    • 제24권2호
    • /
    • pp.97-109
    • /
    • 2023
  • This experimental study investigates the effectiveness of applying carbon fiber reinforced polymer (CFRP) jackets for the retrofit of short reinforced concrete (RC) columns with inadequate transverse reinforcement and stirrup spacing to longitudinal rebar diameter equal to 12. RC columns scaled at 1/3, with round and square section, were subjected to axial compression up to failure. A damage scale is introduced for the assessment of the damage severity, which focusses on the extent of buckling of the longitudinal rebars. The damaged specimens were subsequently repaired with unidirectional CFRP jackets without any treatment of the buckled reinforcing bars and were finally re-tested to failure. Test results indicate that CFRP jackets may be effectively applied to rehabilitate RC columns (a) with inadequate transverse reinforcement constructed according to older practices so as to meet modern code requirements, and (b) with moderately buckled bars without the need of previously repairing the reinforcement bars, an application technique which may considerably facilitate the retrofit of earthquake damaged RC columns. Factors for the estimation of the reduced mechanical properties of the repaired specimens compared to the respective values for intact CFRP-jacketed specimens, in relation to the level of damage prior to retrofit, are proposed both for the compressive strength and the average modulus of elasticity. It was determined that the compressive strength of the retrofitted CFRP-jacketed columns is reduced by 90% to 65%, while the average modulus of elasticity is lower by 60% to 25% in respect to similar undamaged columns jacketed with the same layers of CFRP.

Restoration of pre-damaged RC bridge columns using basalt FRP composites

  • Fahmy, Mohamed F.M.;Wu, Zhishen
    • Earthquakes and Structures
    • /
    • 제14권5호
    • /
    • pp.379-388
    • /
    • 2018
  • This study aims to identify the effect of both longitudinal reinforcement details and damage level on making a decision of repairing pre-damaged bridge columns using basalt fiber reinforced polymer (BFRP) jackets. Two RC bridge columns with improper details of the longitudinal and/or transverse reinforcement were tested under the effect of a constant axial load and increasing lateral cyclic loading. Test results showed that the lap-splice column exhibited an inferior performance where it showed rapid degradation of strength before achieving the theoretical strength and its deformation capacity was limited; however, quick restoration is possible through a suitable rehabilitation technique. On the other hand, expensive repair or even complete replacement could be the decision for the column with the confinement failure mode. After that, a rehabilitation technique using external BFRP jacket was adopted. Performance-based design details guaranteeing the enhancement in the inelastic performance of both damaged columns were addressed and defined. Test results of the repaired columns confirmed that both reparability and the required repairing time of damage structures are dependent on the reinforcement details at the plastic hinge zone. Furthermore, lap-splice of longitudinal reinforcement could be applied as a key design-tool controlling reparability and restorability of RC structures after massive actions.

에폭시 섬유판넬을 이용한 수중구조물의 단면보수시스템에 대한 성능평가 (Performance Evaluation of the Underwater Structure which used a Epoxy Panel)

  • 박준명;홍성남;박선규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.343-346
    • /
    • 2003
  • Confirmation of a damage degree and repair about a damage part are very hard for an underwater structure. And quality control of a construction is very complicated even if repair work is carried out on a damaged structure because repair work is carried out in water. If repair work is carried out while a defect part of the structure which there is in water keeps dry state, a efficient of repair is maximized. However, as for the repair technology about an underwater structure, a systematic researcher is not enough because of the environmental trouble. And, as for the effect about repair method to be applied to a currently underwater structure, it is not certainly proved. In this study The repair work of an underwater structure damaged applied the method that used a fiber panel form work. And a efficient of structure repaired was evaluated.

  • PDF

Experimentally evaluating the seismic retrofitting of square engineered cementitious composite columns using CFRP

  • Akhtari, Alireza;Mortezaei, Alireza;Hemmati, Ali
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.545-556
    • /
    • 2021
  • The present experimental study evaluated the seismic performance of six engineered cementitious composite (ECC) columns strengthened with carbon fiber reinforced polymer (CFRP) laminates under cyclic lateral loading. The ECC columns damaged and crushed in the first stage of cyclic tests were repaired using the ECC with a certain polyvinyl alcohol (PVA) fiber and strengthened with flexural and sheer CFRP laminates and then re-assessed under the cyclic loading. The effects of some variables were examined on lateral displacement, energy absorption and dissipation, failure modes, crack patterns, load bearing capacity and plasticity, and the obtained results were compared with those of the first stage of cyclic tests. The results showed that retrofitting the ECC columns can improve their performance, plasticity and load-bearing threshold, delayed the concrete failure, changed the failure modes and increased the energy absorbed by the strengthened columns element by over 50%.

Investigation of shear transfer mechanisms in repaired damaged concrete columns strengthened with RC jackets

  • Achillopoulou, D.V;Karabinis, A.I
    • Structural Engineering and Mechanics
    • /
    • 제47권4호
    • /
    • pp.575-598
    • /
    • 2013
  • The study presents the results of an experimental program concerning the shear force transfer between reinforced concrete (RC) jackets and existing columns with damages. In order to investigate the effectiveness of the repair method applied and the contribution of each shear transfer mechanism of the interface. It includes 22 concrete columns (core) (of 24,37MPa concrete strength) with square section (150mm side, 500 mm height and scale 1:2). Ten columns had initial construction damages and twelve were subjected to initial axial load. Sixteen columns have full jacketing at all four faces with 80mm thickness (of 31,7MPa concrete strength) and contain longitudinal bars (of 500MPa nominal strength) and closed stirrups spaced at 25mm, 50mm or 100mm (of 220MPa nominal strength). Fourteen of them contain dowels at the interface between old and new concrete. All columns were subjected to repeated (pseudo-seismic) axial compression with increasing deformation cycles up to failure with or without jacketing. Two load patterns were selected to examine the difference of the behavior of columns. The effects of the initial damages, of the reinforcement of the interface (dowels) and of the confinement generated by the stirrups are investigated through axial- deformation (slip) diagrams and the energy absorbed diagrams. The results indicate that the initial damages affect the total behavior of the column and the capacity of the interface to shear mechanisms and to slip: a) the maximum bearing load of old column is decreased affecting at the same time the loading capacity of the jacketed element, b) suitable repair of initially damaged specimens increases the capacity of the jacketed column to transfer load through the interface.

Collapse Vulnerability and Fragility Analysis of Substandard RC Bridges Rehabilitated with Different Repair Jackets Under Post-mainshock Cascading Events

  • Fakharifar, Mostafa;Chen, Genda;Dalvand, Ahmad;Shamsabadi, Anoosh
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권3호
    • /
    • pp.345-367
    • /
    • 2015
  • Past earthquakes have signaled the increased collapse vulnerability of mainshock-damaged bridge piers and urgent need of repair interventions prior to subsequent cascading hazard events, such as aftershocks, triggered by the mainshock (MS). The overarching goal of this study is to quantify the collapse vulnerability of mainshock-damaged substandard RC bridge piers rehabilitated with different repair jackets (FRP, conventional thick steel and hybrid jacket) under aftershock (AS) attacks of various intensities. The efficacy of repair jackets on post-MS resilience of repaired bridges is quantified for a prototype two-span single-column bridge bent with lap-splice deficiency at column-footing interface. Extensive number of incremental dynamic time history analyses on numerical finite element bridge models with deteriorating properties under back-to-back MS-AS sequences were utilized to evaluate the efficacy of different repair jackets on the post-repair behavior of RC bridges subjected to AS attacks. Results indicate the dramatic impact of repair jacket application on post-MS resilience of damaged bridge piers-up to 45.5 % increase of structural collapse capacity-subjected to aftershocks of multiple intensities. Besides, the efficacy of repair jackets is found to be proportionate to the intensity of AS attacks. Moreover, the steel jacket exhibited to be the most vulnerable repair intervention compared to CFRP, irrespective of the seismic sequence (severe MS-severe or moderate AS) or earthquake type (near-fault or far-fault).

헌치로 보강된 철골모멘트골조의 지진응답 사례연구 (A Case Study on Seismic Response of Haunch Repaired Steel MRFs)

  • 이철호
    • 한국지진공학회논문집
    • /
    • 제1권2호
    • /
    • pp.69-78
    • /
    • 1997
  • 철골 모멘트 접합부의 보 하부를 헌치로 보강하여 내진성을 크게 향상 시킬 수 있음이 최근의 실물대 보-기둥 "부분골조" 실험을 토하여 확인된 바 있다. 그러나 헌치보강에서 기인할 수 있는 부작용 (side effecs) 또는 보강구조체의 "시스템 레벨"의 거동에 관해서는 현재 잘알려진 것이 없다. 본 연구에서는 헌치보강시 생성되는 이중패널존의 거동을 해석과정에 반영하여 보강구조체의 시스템 레벨의 거동변화를 고찰하였다. 이중패널존의 모델링은 최근에 필자가 제시한 기법을 사용하였으며 1994년 노스리지 지진 당시 접합부 손상을 입은 13층 철골모멘트골조를 대상으로 연구를 수행하였다. 정적/동적 비선형해석에 의해 얻어진 원구조물과 부강구조물의 전체적 응답(global responses)은 큰 차이를 보이지 않았으며 취약층(weak story)의 촉진과 같은 유해한 부작용도 수반되지 않았다.은 유해한 부작용도 수반되지 않았다.

  • PDF