• Title/Summary/Keyword: Repair bond strength

Search Result 135, Processing Time 0.027 seconds

Repair bond strength of resin composite to three aged CAD/CAM blocks using different repair systems

  • Gul, Pinar;Altinok-Uygun, Latife
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.131-139
    • /
    • 2020
  • PURPOSE. The purpose of this study is to evaluate the repair bond strength of a nanohybrid resin composite to three CAD/CAM blocks using different intraoral ceramic repair systems. MATERIALS AND METHODS. Three CAD/CAM blocks (Lava Ultimate, Cerasmart, and Vitablocks Mark II) were selected for the study. Thirty-two specimens were fabricated from each block. Specimens were randomly divided into eight groups for the following different intraoral repair systems: Group 1: control group (no treatment); Group 2: 34.5% phosphoric acid etching; Group 3: CoJet System; Group 4: Z-Prime Plus System; Group 5: GC Repair System; Group 6: Cimara System; Group 7: Porcelain Repair System; and Group 8: Clearfil Repair System. Then, nanohybrid resin composite (Tetric Evo Ceram) was packed onto treated blocks surfaces. The specimens were thermocycled before application of repair systems and after application of composite resin. After second thermal cycling, blocks were cut into bars (1 × 1 × 12 ㎣) for microtensile bond strength tests. Data were analyzed using two-way ANOVA and Tukey's HSD test (α=.05). RESULTS. Cimara System, Porcelain Repair, and Clearfil Repair systems significantly increased the bond strength of nanohybrid resin composite to all CAD/CAM blocks when compared with the other tested repair systems (P<.05). In terms of CAD/CAM blocks, the lowest values were observed in Vitablocks Mark II groups (P<.05). CONCLUSION. All repair systems used in the study exhibited clinically acceptable bond strength and can be recommended for clinical use.

Re-Repair Method for Deterioration of Partial Depth Repair Section in Portland Cement Concrete Pavement (콘크리트 포장 부분단면보수 재파손 구간의 적정 보수 방안)

  • Lee, Yong Hyeon;Kim, Hyun Seok;Jung, Won Kyong;Oh, Han Jin;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.33-42
    • /
    • 2017
  • PURPOSES : The purpose of this study is to suggest the construction and quality control method for the re-repair of a deteriorated partial depth repair for sections of Portland cement concrete pavement. METHODS : An experimental construction was conducted to extend the repair width for removing an existing repair section. A removal method was used to ensure early performance for a deteriorated partial depth repair section. Bond strength and split tensile strength were measured at the near vertical interface layer between the existing pavement and repair material. The area was analyzed for various conditions such as the extended repair area and the removing method of the existing repair section. RESULTS : As a result of analysis of bond strength and split tensile strength, the bonding performance of a milling removed section was improved over a cutting and hand breaker removed section. The bond strength was analyzed to increase slightly as the extended repair width for removing the existing repair section increased. The split tensile strength did not show a clear relationship to an increased extended repair width of an existing removed repair section. CONCLUSIONS : The milling removal method should be applied in the removal of existing deteriorated partial depth repair sections. The extended repair width for a re-repair section should be wider than the existing partial depth repair with at least a 75-mm length and width for the bond strength and the split tensile strength.

Evaluating the bond strength between concrete substrate and repair mortars with full-factorial analysis

  • Felekoglu, Kamile Tosun;Felekoglu, Burcu;Tasan, A. Serdar;Felekoglu, Burak
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.651-668
    • /
    • 2013
  • Concrete structures need repairing due to various reasons such as deteriorative effects, overloading, poor quality of workmanship and design failures. Cement based repair mortars are the most widely used solutions for concrete repair applications. Various factors may affect the bond strength between concrete substrate and repair mortars. In this paper, the effects of polymer additives, strength of the concrete substrate, surface roughness, surface wetness and aging on the bond between concrete substrate and repair mortar has been investigated. Full factorial experimental design is employed to investigate the main and interaction effects of these factors on the bond strength. Analysis of variance (ANOVA) under design of experiments (DOE) in Minitab 14 Statistical Software is used for the analysis. Results showed that the interaction bond strength is higher when the application surface is wet and strength of the concrete substrate is comparatively high. According to the results obtained from the analysis, the most effective repair mortar additive in terms of bonding efficiency was styrene butadiene rubber (SBR) within the investigated polymers and test conditions. This bonding ability improvement can be attributed to the self-flowing ability, high flexural strength and comparatively low air content of SBR modified repair mortars. On the other hand, styrene acrylate rubber (SAR) modified mortars was found incompatible with the concrete substrate.

Comparative analysis of bond strength to root dentin and compression of bioceramic cements used in regenerative endodontic procedures

  • Maykely Naara Morais Rodrigues;Kely Firmino Bruno;Ana Helena Goncalves de Alencar;Julyana Dumas Santos Silva;Patricia Correia de Siqueira;Daniel de Almeida Decurcio;Carlos Estrela
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.59.1-59.14
    • /
    • 2021
  • Objectives: This study compared the Biodentine, MTA Repair HP, and Bio-C Repair bioceramics in terms of bond strength to dentin, failure mode, and compression. Materials and Methods: Fifty-four slices obtained from the cervical third of 18 single-rooted human mandibular premolars were randomly distributed (n = 18). After insertion of the bioceramic materials, the push-out test was performed. The failure mode was analyzed using stereomicroscopy. Another set of cylindrically-shaped bioceramic samples (n = 10) was prepared for compressive strength testing. The normality of data distribution was analyzed using the Shapiro-Wilk test. The Kruskal-Wallis and Friedman tests were used for the push-out test data, while compressive strength was analyzed with analysis of variance and the Tukey test, considering a significance level of 0.05. Results: Biodentine presented a higher median bond strength value (14.79 MPa) than MTA Repair HP (8.84 MPa) and Bio-C Repair (3.48 MPa), with a significant difference only between Biodentine and Bio-C Repair. In the Biodentine group, the most frequent failure mode was mixed (61%), while in the MTA Repair HP and Bio-C Repair groups, it was adhesive (94% and 72%, respectively). Biodentine showed greater resistance to compression (29.59 ± 8.47 MPa) than MTA Repair HP (18.68 ± 7.40 MPa) and Bio-C Repair (19.96 ± 3.96 MPa) (p < 0.05). Conclusions: Biodentine showed greater compressive strength than MTA Repair HP and Bio-C Repair, and greater bond strength than Bio-C Repair. The most frequent failure mode of Biodentine was mixed, while that of MTA Repair HP and Bio-C Repair was adhesive.

A comparison of the shear bond strength between porcelain repair systems and fractured surface of porcelain-fused-to-metal restorations (도재파절 양상에 따른 수종의 도재 수복용 레진의 결합력에 관한 실험적 연구)

  • Choi, Jeung Won;Han, Dong Hoo;Jeong, Chang Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.2
    • /
    • pp.147-163
    • /
    • 1990
  • Although dental porcelain demonstrates lasting esthetic results, it suffers from inherent brittle fractures. Various techniques and materials for intraoral porcelain repair has been suggested. This study investigated the in vitro shear strength of three porcelain repair systems according to aspects of the porcelain fractures. The purpose of this study was to evaluate the shear bond strength of three porcelain repair systems(All-bond, Clearfil, Scotchprime) according to fractured surface of porcelain - fused - to - metal restorations. For this study specimens were divided into five groups : group 1 represented fracture occurred at body porcelain layer, group 2 represented fracture occurred at opaque porcelain layer, group 3 represented fracture including 1/3 of metal exposure, group 4 represented fracture including 2/3 of metal exposure, and group 5 represented all metal surface was exposed. Specimens were stored in double deionized water(24Hr, $37^{\circ}C$) and thermocycling was performed(24Hr, 1080cycles), and subjected to a shear force parallel to the repair resin and porcelain interface by use of an University Testing Machine. The results of this study were obtained as follows : 1. In group 1 and 2, bond strength was relatively high, and bond strength showing reducing tendency as exposure of metal was increased. 2. In group 1, bond strength was relatively high, and no significant differences in porcelain repair system. 3. In group 2, 3 and 4, All-bond and Clearfil provided significantly higher bond strength than scotchprime. 4. In group 5, bond strength was the lowest among all groups and especially in case if Scotchprime. 5. Cohesive failure was observed in group 1 and 2, adhesive failure was observed in group 5, and cohesive / adhesive failures were observed in group 3 and 4.

  • PDF

Porcelain repair - Influence of different systems and surface treatments on resin bond strength

  • Yoo, Ji-Young;Yoon, Hyung-In;Park, Ji-Man;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.5
    • /
    • pp.343-348
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate the bond strength of composite resin on the fracture surface of metal-ceramic depending on the repair systems and surface roughening methods. MATERIALS AND METHODS. A total of 30 disk specimens were fabricated, 15 of each were made from feldspathic porcelain and nickel-chromium base metal alloy. Each substrate was divided into three groups according to the repair method: a) application of repair system I (Intraoral Repair Kit) with diamond bur roughening (Group DP and DM), b) application of repair system I with airborne-particle abrasion (Group SP and SM), and c) application of repair system II (CoJet Intraoral Repair System, Group CP and CM). All specimens were thermocycled, and the shear bond strength was measured. The data were analyzed using the Kruskal-Wallis analysis and the Mann-Whitney test with a significance level of 0.05. RESULTS. For the porcelain specimens, group SP showed the highest shear bond strength ($25.85{\pm}3.51MPa$) and group DP and CP were not significantly different. In metal specimens, group CM showed superior values of bond strength ($13.81{\pm}3.45MPa$) compared to groups DM or SM. CONCLUSION. Airborne-particle abrasion and application of repair system I can be recommended in the case of a fracture localized to the porcelain. If the fracture extends to metal surface, the repair system II is worthy of consideration.

Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia

  • Han, In-Hae;Kang, Dong-Wan;Chung, Chae-Heon;Choe, Han-Cheol;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • PURPOSE. This study compared the effect of three intraoral repair systems on the bond strength between composite resin and zirconia core. MATERIALS AND METHODS. Thirty zirconia specimens were divided into three groups according to the repair method: Group I-CoJet$^{TM}$ Repair System (3M ESPE) [chairside silica coating with $30{\mu}m$ $SiO_2$ + silanization + adhesive]; Group II-Ceramic Repair System (Ivoclar Vivadent) [etching with 37% phosphoric acid + Zirconia primer + adhesive]; Group III-Signum Zirconia Bond (Heraus) [Signum Zirconia Bond I + Signum Zirconia Bond II]. Composite resin was polymerized on each conditioned specimen. The shear bond strength was tested using a universal testing machine, and fracture sites were examined with FE-SEM. Surface morphology and wettability after surface treatments were examined additionally. The data of bond strengths were statistically analyzed with one-way ANOVA and Tamhane post hoc test (${\alpha}$=.05). RESULTS. Increased surface roughness and the highest wettability value were observed in the CoJet sand treated specimens. The specimens treated with 37% phosphoric acid and Signum Zirconia Bond I did not show any improvement of surface irregularity, and the lowest wettability value were found in 37% phosphoric acid treated specimens. There was no significant difference in the bond strengths between Group I ($7.80{\pm}0.76$ MPa) and III ($8.98{\pm}1.39$ MPa). Group II ($3.21{\pm}0.78$ MPa) showed a significant difference from other groups (P<.05). CONCLUSION. The use of Intraoral silica coating system and the application of Signum Zirconia Bond are effective for increasing the bond strength of composite resin to zirconia.

Shear Bond Strength of Porcelain Repair Systems (도재 수리 시스템의 전단결합강도에 관한 연구)

  • Woo, Soo;Shin, Soo-Youn;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.3
    • /
    • pp.211-220
    • /
    • 2006
  • Need of porcelain-repair system is largely demanding as dental porcelain restorations are increased in clinical dentistry. This study investigated shear bond strength of commercial porcelain-repair systems on dental porcelain and their reliability. Experimental groups were as follows; Group A Super Bond C&B, Group B Porcelain repair kit, Group C Ceramic repair, and Group D Spectrum system as a control. Porcelain disks were fired and embedded in epoxy resin. Porcelain surface were ground using 220 grit SiC disk, then cleaned in ultrasonic bath. Then porcelain specimens were treated with each repair system. A clear polystyrene cylinder 3.5 mm in internal diameter was filled with composite resin. Then the resin cylinder was polymerized with a visible light curing unit. Thirty one specimens at each group were prepared and stored at $37^{\circ}C$ distilled water for 48 h. Specimens were tested in an Instron testing machine according to ISO TR 11405. Mean shear bond strength and standard deviation of each group was $15.7{\pm}4.1MPa$ (Group A), $12.8{\pm}4.9MPa$ (Group B), $7.2{\pm}3.0MPa$ (Group C) and $9.6{\pm}2.2MPa$ (Group D). ANOVA and Tukey HSD post-hoc test showed that there were significant differences between groups (p<0.05). Data of bond strength were analyzed with two-parameter Weibull distribution. Confidence interval of Weibull modulus (m-parameter) at 95% of Group A (3.5-6.3) and Group D (3.6-6.0) were significantly higher than Group B (2.2-3.7) and Group C (2.0-3.4). There was little correlation between mean shear bond strength and Weibull modulus. Results indicated that acid-etching of porcelain surface increased porcelain-resin shear bonding strength.

Repair bond strengths of non-aged and aged resin nanoceramics

  • Subasi, Meryem Gulce;Alp, Gulce
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.364-370
    • /
    • 2017
  • PURPOSE. To explore the influence of different surface conditionings on surface changes and the influence of surface treatments and aging on the bond strengths of composites to non-aged and aged resin nanoceramics. MATERIALS AND METHODS. Rectangular-shaped non-aged and aged (5000 thermocycles) resin nanoceramic specimens (Lava Ultimate) (n=63, each) were divided into 3 groups according to surface treatments (untreated, air abrasion, or silica coating) (n=21). The surface roughness was measured and scanning electron microscopy was used to examine one specimen from each group. Afterwards, the specimens were repaired with a composite resin (Filtek Z550) and half were sent for aging (5000 thermocycles, n=10, each). Shear bond strengths and failure types were evaluated. Roughness and bond strength were investigated by two- and three-way analysis of variance, respectively. The correlation between the roughness and bond strength was investigated by Pearson's correlation test. RESULTS. Surface-treated samples had higher roughness compared with the untreated specimens (P=.000). For the non-aged resin nanoceramic groups, aging was a significant factor for bond strength; for the aged resin nanoceramic groups, surface treatment and aging were significant factors. The failures were mostly adhesive after thermal cycling, except in the non-aged untreated group and the aged air-abraded group, which had mostly mixed failures. Roughness and bond strength were positively correlated (P=.003). CONCLUSION. Surface treatment is not required for the repair of non-aged resin nanoceramic; for the repair of aged resin nanoceramic restorations, air abrasion is recommended.

Bond strength of denture base resin repaired according to contamination (의치상 수리면 오염원에 따른 수지의 결합강도)

  • Jung, Kyung-Pung
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.71-79
    • /
    • 2003
  • The purpose of this study was to investigate bond strength of denture base resin repaired according to contamination. One commercial denture base resin and two different kinds of relines resin were tested; Lusiton 199(denture base resin), Vertex(reline resin) and TokusoRebase(repair resin). The specimens were processed according to the manufacturer's instructions to cured denture base resin(polymethylmethacrylate; PMMA) and reline resin. Bond strengths were examined by use of a three-point transverse flexural strength test. Data were analyzed with two-factor analysis of variance and Duncan's post-hoc test at $\alpha$=0.05. Generally, the bondstrength of heat-cured resin(Lusiton 199) was higher than the other resins. The contaminations produced an decrease in bond strength. Therefore the contamination, such as saliva or water must be avoided during the laboratory repair procedures.

  • PDF