• Title/Summary/Keyword: Repair and Rehabilitation Method

Search Result 86, Processing Time 0.02 seconds

Behavior Analysis of Ultra-Thin Whitetopping in Field (얇은 콘크리트 덧씌우기 포장의 거동 평가)

  • Kang, Jang-Hwan;Jang, Jin-Yen;Koo, Han-Mo;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.6 no.1 s.19
    • /
    • pp.25-36
    • /
    • 2004
  • The total length of paved roads in Korea is 67,265 Km, and among these roads, about 40% of the national highways and 98% of local roads are paved with asphalt concrete. The major distress to asphalt pavement is rutting and fatigue crack. The permanent deformation including rutting accounts for about 75% of this distress. UTW(Ultra-Thin Whitetopping), which is known for its high-quality performance in asphalt pavement with rutting and cracking, seems to reduce maintenance costs significantly if it is used as the maintenance/repair method for domestic asphalt pavement. In the research, static load test was conducted to establish a behavior of Whitetopping under traffic and environmental condition. It showed that the effect of the thickness of the concrete layer and the temperature change was significant. In addition, the tensile strain as the wheel load position was close to interior and edge of concrete slab were increased up to 75% of maximum tensile strain. It showed that joint spacing must be considered in UTW design procedure.

  • PDF

Bond Behavior between Parent Concrete and Carbon Fiber Mesh (탄소섬유메쉬와 콘크리트의 부착거동)

  • Yun, Hyun-Do;Sung, Soo-Yong;Oh, Jae-Hyuk;Seo, Soo-Yeon;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.769-777
    • /
    • 2003
  • The strengthening of concrete structures in situ with externally bonded carbon fiber is increasingly being used for repair and rehabilitation of existing structures. Because carbon fiber is attractive for this application due to its good tensile strength, resistances to corrosion, and low weight. Generally bond strength and behavior between concrete and carbon fiber mesh(CFM) is very important, because of enhancing bond of CFM. Therefore if bond strength is sufficient, it will be expect to enhance reinforcement effect. Unless sufficient, expect not to enhance reinforcement effect, because of occuring bond failure between concrete and CFM. In this study, the bond strength and load-displacement response of CFM to the concrete by the direct pull-out test(the tensile-shear test method) were investigated using the experiment and the finite element method analysis with ABAQUS. The key variables of the experiment are the location of clip, number of clips and thickness of cover mortar. The general results indicate that the clip anchorage technique for increasing bond strength with CFM appear to be effective to maintain the good post-failure behavior.

The Examination of Load Carrying Capacity Based on Existing Data for Improved Safety Assessment Method of Expressway Bridges (고속도로 교량의 개선된 안전성 평가방안을 위한 실측자료에 기초한 공용 내하력 검토)

  • Lee, Jong Ho;Han, Sung Ho;Sin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.597-605
    • /
    • 2009
  • The safety of expressway bridges was estimated by checking the external condition rank based on the nondestructive inspection and material test and by measuring load carrying capacity based on the result of load test. Although the load carrying capacity of the bridges was clearly low compared to the design standard, it was examined that many of the bridges have good external condition rank relatively. Also, it can be assured that load carrying capacity shows a considerable difference according to various condition even though the bridges have similar construction year and a structural type. Therefore, this study showed various problems of the current safety measurement of expressway bridges by considering the status of the expressway bridges, external condition rank, and method of safety diagnosis and repair, rehabilitation for maintenance. Based on the existing data of over 400 expressway bridges, the load carrying capacity was analyzed quantitatively considering bridge type, serviced life, design live load, external condition rank and traffic count as variables. The result of this study will be expected to provide the basic information for a reasonable safety assessment of expressway bridge.

Study on the Shear Strengthening of Concrete Beams with Wire Rope Clamped by Bolts (볼트 체결된 와이어 로프를 이용한 RC 보의 전단보강에 대한 연구)

  • Kim, Sun-Young;Song, Jin-Gyu;Lee, Young-Uk;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.283-290
    • /
    • 2006
  • The paper describes m experimental study on the shear strengthening of concrete beams with exposed wire rope. The strengthening method is using the mechanical bolting of wire rope tensioned on the exterior of beam section. There are two shear strengthening types. The first is closed type wrapped beam section with wire rope like as closed stirrup. The second is U type tensioned at the anchor located in the side of beam section. The main parameters of specimens are strengthening spacings of wire rope with 150, 200, and 250mm for the closed and U type respectively. The shear span ratio of specimens applied by 3-point loading is 4. The results showed that the ultimate shear strength and ductility of strengthened beams increased significantly compared with non-strengthened beams. Especially, the strengthening effect of closed type was very preferable to U type. Therefore, the shear strengthening method with wire rope is very reasonable in view of repair and rehabilitation of beams.

A Study on Maintenance Cost Model for Establishing a Strategies of Port Facility Maintenance (항만시설 유지관리 전략수립을 위한 비용모델연구)

  • Park, Miyun;Lee, Jeonghun;Park, Sangwoo;Lim, Jonggwon
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.2
    • /
    • pp.276-290
    • /
    • 2020
  • Purpose: The construction history of domestic port facilities has been more than 100 years, and until recently, modern facilities have been continuously built and expanded. However, it is not easy to keep the required performance conditions at the time of initial construction due to changes in the marine environment and increase in volume. In particular, in the case of harbor structures that have a long service life, safety performance and function management are becoming very important due to the increase in the size of ships, the increasing frequency of use, and the increase in the scale of natural disasters. Method: Therefore, this study investigates the state change by structural type of port facilities and analyzes the rehabilitation activities and the history that contribute to the performance improvement and life extension activities. Result: Through this, we distinguished between performance improvement cost (CAPEX) and repair maintenance activity (OPEX) that can be used to establish port facility maintenance strategy, and suggested cost model that can be used to establish maintenance strategy. Conclusion: These studies are expected to contribute greatly to mid- to long-term investment decisions.

Conceptual Design of the Three Unit Fixed Partial Denture with Glass Fiber Reinforced Hybrid Composites (Glass fiber 강화 복합레진을 사용한 3본 고정성 국소의치의 개념 설계 연구)

  • Na, Kyoung-Hee;Lee, Kyu-Bok;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.3
    • /
    • pp.145-155
    • /
    • 2002
  • The results of the present feasibility study are summarized as follows, 1. The three unit bridge of knitted material and UD fibre reinforcement has both the rigidity and the strength against a vertical occlusal load of 75N. 2. Stress concentration at the junctional area between the bridge and the abutments, i.e. between the pontic and the knitted caps was observed. In the case of the bridge with reinforcement straps, it was partly shown that the concentration problem could be improved by simply increasing the fillet size at the area. Further refining in the surface of the junctional area will be needed to ensure a further improvement in the stress distribution. This will require some trade off in the level of the stress and the available space. A parametric study will help to decide the appropriate size of the fillet. 3. Design refinement is a must to improve the stress distribution and realize the most favourable shape in terms of fabrication. The current straight bar with a constant cross section area can be redesigned to a tapered shape. The curve from the dental arch should also be placed on the pontic design. In accordance with design refinement, the resistance of the bridge frame to other load cases should be evaluated. 4. Although not included in the present feasibility study, it is estimated that bridges of the anterior teeth can be made strong enough with the knitted material without further reinforcement using unidirectional materials. In this regard, a feasibility study on design concepts and stress analysis for 3, 4, 5 unit bridge is suggested. 5. Two types of bridge were analysed in terms of fatigue. The safe life design concept, i.e. fatigue design concept, looks reasonable for the bridge where if cracks should form and propagate there is virtually nothing a dentist to do. The bridge must be designed so that no crack will be initiated during the life span. In the case of crowns, however, if constructed with composite resin with knitted materials, it might be possible to repair them, which in general is impossible for crowns of PFM or of metal. Therefore for composite resin crowns, a damage tolerance design concept can be applied and reasonably higher operational stresses can be allowed. In this case, of course, a periodic inspection program should be established in parallel. 6. Parts of future works in terms of structural viewpoint which need to be addressed are summarized as the following: 1) To develop processing technology to accommodate design concepts; 2) More realistic modelling of the bridge and analysis-geometry and loading condition. Thickness variation in the knitted material, taper in the pontic, design for anterior tooth bridge, the effect of combined loads, etc, will need to be included; 3) To develop appropriate design concepts and design goals for the fibre composite FPD aiming at taking the best advantage of knitted materials, including the damage tolerance design concept; 4) To develop testing method and perform test such as static ultimate load test, fatigue test, repair test, etc, as necessary.