• Title/Summary/Keyword: Renewable energy system

Search Result 2,432, Processing Time 0.027 seconds

Review of Multifunctional Inverter Topologies and Control Schemes Used in Distributed Generation Systems

  • Teke, Ahmet;Latran, Mohammad Barghi
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.324-340
    • /
    • 2014
  • Recent developments in power electronics technology have spurred interest in the use of renewable energy sources as distributed generation (DG) generators. The key component in DG generators is a grid-connected inverter that serves as an effective interface between the renewable energy source and the utility grid. The multifunctional inverter (MFI) is special type of grid-connected inverter that has elicited much attention in recent years. MFIs not only generate power for DGs but also provide increased functionality through improved power quality and voltage and reactive power support; thus, the capability of the auxiliary service for the utility grid is improved. This paper presents a comprehensive review of the various MFI system configurations for single-phase (two-wire) and three-phase (three- or four-wire) systems and control strategies for the compensation of different power quality problems. The advances in practical applications and recent research on MFIs are presented through a review of nearly 200 papers.

A Critical Review on Japan's Offshore Wind Bidding System (일본의 해상풍력 입찰제도에 관한 비판적 고찰)

  • Son Bumsuk
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.70-77
    • /
    • 2024
  • This study examines the issues regarding the selection competition process of offshore wind power operators conducted in Japan in 2020. It also explores the implications of the findings on the legal system of Korea for the introduction of offshore wind power in the future. Drawing on Japan's example, Korea must reconsider the importance of the price aspect when introducing offshore wind power and adopt policies that prioritize balanced industrial development and focus on regional and domestic economic ripple effects.

An Analysis of Congestion Cost for Electric Power Transmission in Consideration of Uncertainty of Future Electric Power System (미래 전력 계통의 불확실성을 고려한 송전혼잡비용 분석)

  • Park, Sung Min;Kim, Sung Soo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.131-137
    • /
    • 2014
  • It is expected that there will be delay of scheduled transmission network reinforcement and huge investment of renewable energy resources in Korea. As transmission capacity expansion delayed, supplying power to Seoul metropolitan area will not be increased as scheduled. In addition, uncertain renewable energy out of Seoul metropolitan area can cause transmission congestion in the future power system. These two combining effects will make the difference in locational marginal prices(LMP) and congestion costs increase. In that sense, this paper will analyze how much the congestion costs for Korea power system are incurred in the future power system. Most of previous approaches to analyze the congestion costs for electric power system are based on the optimal power flow model which cannot deal with hourly variation of power system. However, this study attempted to perform the analysis using market simulation model(M-Core) which has the capability of analyzing the hourly power generation cost and power transmission capacity, and market prices by region. As a result, we can estimate the congestion costs of future power system considering the uncertainty of renewable energy and transmission capacity.

The Case Study on the Niche Experimentation in Offshore Wind Renewable Energy Transition (해상풍력 기술의 사회-기술시스템 전환과정에 관한 탐색적 사례연구)

  • Kim, Bonggyun;Kim, Dukyoung;Kim, Kyungnam;Kim, Donghwan
    • Journal of Korea Technology Innovation Society
    • /
    • v.17 no.2
    • /
    • pp.355-379
    • /
    • 2014
  • For the transition to the low carbon society, it is inevitable but difficult journey that the new energy technology spread co-exists with formal social system. The objective of offshore wind power plant that has been implemented by the government is to connect large capacity new renewable energy to the central electric power system. Therefore, for the successful introduction of offshore wind power system, the transition of the formal social technology system should be companied. This study analysis the energy system transition about niche strategy adjustment using Multiple Level Perspectives & Strategic Niche Management. It also multi level analyzes and structuralizes the process that new technology, as a research result, evolves through connecting and communicating with formal regime and landscape. Also, adjusting Strategic Niche Management, it diagnoses the obstructive factors in the initial stage of niche experiment and found the major reasons why offshore wind power test plant had been delayed. Through this study, it reaches to the practical implication that offshore niche technology could grow stably in the energy system and various policies.

Performance Simulation and Analysis of the Solar Thermal Storage System Using Heat Pipe (히트파이프를 사용한 태양열 축열시스템의 성능모사 및 해석)

  • Jung, Eui-Guk;Boo, Joon-Hong;Kim, Jong-Kyu;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.80-85
    • /
    • 2009
  • Mathematical modeling and performance simulation results were shown for the solar thermal storage system which used heat pipe. The thermal storage system was composed of thermal storage tank and charging/discharging heat exchanger with one by the heat pipes. Heat pipe heat exchanger was attached to system, and could carry out charging and discharging to thermal storage tank at the same time. Height of the thermal storage tank was 600 mm, and that of the charging/discharging heat exchanger was 400 mm. Length of the heat pipe was the same as the total height of thermal storage system, and outer and inner diameter were 25.4 mm(O.D.) and 21.4 mm(I.D.) respectively. Diameter of the circular was 43 mm(O.D.), and fin geometries were considered as the design parameters. High temperature phase change material(PCM), $KNO_3$ and low temperature PCM, $LINO_3$ were charged to storage tank to adjust working temperature. Total size of thermal storage system able to get heat capacity more than 500 kW was calculated and the results were shown in this study. Number of heat pipe was required more than maximum 500, and total length of thermal storage system was calculated to the more than maximum 3 m at various condition.

  • PDF

Environmental Effect Analysis for PV system using LCA (LCA를 이용한 태양광발전의 환경영향분석)

  • Choi, Bong-Ha;Park, Soo-Uk;Lee, Deok-Ki
    • New & Renewable Energy
    • /
    • v.3 no.2 s.10
    • /
    • pp.11-16
    • /
    • 2007
  • This paper analyses the environmental effect of 100kw PV system installed in Tibet using Life Cycle Assessment(LCA). Then, energy payback time(EPT) and life-cycle CO2 emission rate are estimated based on life-cycle of the PV system. As a result of the estimation, 6 year of EPT and 20 g-C/kWh of CO2 emission rate are obtained. In China, average CO2 emission rate of fossil fuel power generation plant is 260 g-C/kWh. This shows that PV system would be very promising for global environmental issues. For advanced LCA, we need to collect detailed and various data about raw material of PV system.

  • PDF

A Study on the Development of the Web-based Monitoring System for the Wind Turbine Powers (웹 기반 풍력발전 모니터링 시스템 개발에 관한 연구)

  • Kim, In-Su;Kim, Sung-Sik;Choi, Young-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1147-1148
    • /
    • 2006
  • The increase of exhaust gas which is caused by with the industry activity which follows in the Industrial Revolution of the human being has had an influence on the globe climate system so that causes the problem of the greenhouse effect. As a comprehensive countermeasures, it has been prompted to save energy, build a structure environmentally friendly and use renewable energy sources that are continually replenished by nature-the sun, the wind, the Earth's heat, and plants. In addition, new technologies that turn these fuels into usable forms of energy-most often electricity, but also heat, chemicals or mechanical power have been applied actively to the social infrastructure. Therefore, there should be methods to manage forms of renewable energy effectively and securely. This paper proposes the web-based monitoring system for the wind power system of these methods and introduces the real web-based monitoring system installed in Daegwallyeong.

  • PDF

A Study on Integrated Operation Strategies Between New & Renewable Energy Policy and Demand Side Management Policy (신재생에너지 정책과 수요관리 정책의 통합 운영 전략에 관한 연구)

  • Hwang, Sungwook;Jung, Hoon;Nah, Hwanseon;Won, Jongryul;Kim, Junghoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.144-144
    • /
    • 2010
  • Reasonable usage methods of energy resources, which are limited for human beings to use, consists of new & renewable energy (NRE) and demand side management (DSM). All technologies and policies for energy resources are classified into two fields, methods for using new energy resources and methods for using conventional fuel energy resources. Various development activities for these fileds have been implemented and various subsidy programs have been operated to penetrate into markets rapidly. These subsidy programs have various types of subsidy by energy resources and programs and the budget are funded by government, which is called Electric Power Industry Basis Fund and is managed considering technology level, economic analysis, global environment, etc. These subsidy programs are managed by Korea Energy Management Corporation (KEMCO) for NRE and by Korea Electric Power Corporation (KEPCO) for DSM, the management are different among two corporations because the purposes and features of establishment are different though these are all public organization. KEMCO is managing the NRE subsidy programs according to the government will, while the management of KEPCO subjects to power system operations though the government will for DSM is considered. NRE which is on the initial phase of diffusion would not affect on power system seriously but the affects could be grown when the diffusion and importance are expanded. Hence some integrated affection analyses considering NRE and DSM are required and this paper shows the concept of integrated operation strategies with ground source heat pump systems which are related with two fields simultaneously.

  • PDF

The Greenhouse-Gas Mitigation Potential analysis by Distribution of Solar Thermal System in Housing Sector (태양열난방시스템 도입에 따른 주거부문에서의 온실가스 감축 잠재량 분석)

  • Jeong, Young-Sun;Mun, Sun-Hye;Yu, Ki-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.1
    • /
    • pp.32-39
    • /
    • 2012
  • New and renewable energy systems(solar thermal system, photovoltaic system, geothermal system, wind power system) are environmentally friendly technologies and these in South Korea are very important measures to reduce greenhouse-gas(GHG) and to push ahead with Green Growth. The purpose of this paper is to analyze GHG mitigation potential by distribution of solar thermal system in housing sector with bottom-up model called 'Long-range Energy Alternative Planning system'. Business as usual(BAU) was based on energy consumption characteristic with the trend of social-economic prospects and the volume of housing. The total amount of GHG emission of BAU was expected to continuous increase from 66.0 million-ton $CO_{2e}$ in 2007 to 73.1 million-ton $CO_{2e}$ in 2030 because of the increase of energy consumption in housing. The alternative scenario, distribution of solar thermal system in housing sector had GHG mitigation potential 1.54 million-ton $CO_{2e}$ in 2030. The results of this study showed that new and renewable energy systems made a contribution of reducing the use of fossil fuel and the emission of greenhouse-gas in building.

The Study of Thermal Performance on Solar Window (다기능 솔라윈도우의 열성능 연구)

  • Cho, YilSik;Kim, Janghoi;Yang, Yoonsub;Kim, ByoungSoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.65.2-65.2
    • /
    • 2010
  • The aim of this study was to analysis the Heating/cooling performance of Solar Window built in apartments. The solar window is the idea to integrate daylight as a third form of solar energy into a PV/Solar Collector system and allows more control due to the possibility to close the reflectors. However, there can be a conflict between the desire for on one hand daylight and view and on the other hand optimal energy conversion for the PV/Solar Collector system. The process of this study is as follows: 1) The Solar Window system is designed through the investigation of previous paper and work. 2)The simulation program(ESP-r, Therm5.0, Window6.0) was used in Heating/cooling performance analysis. The reference model of simulation was made up to analysis Heating/cooling performance on Solar Window. 3)Selected reference model(Floors:15, Area of Unit:$148.5m^2$) for heating energy analysis, Energy performance simulation with various variants, such as U-value of Solar Window system according to its position and angle. Consequently, When Solar Window system is equipped with balcony window of Apartment, Annual heating and cooling energy of reference model was cut down about 5%~11%.

  • PDF