• Title/Summary/Keyword: Renewable energy system

Search Result 2,439, Processing Time 0.037 seconds

A Study on the Development Direction of the Renewable Energy Carbon Certification System: Focused on Analysis of International Trade Policy and the Dispute Cases Related to Environmental Labeling (재생에너지 탄소인증제도의 개발 방향성에 관한 연구 : 국제무역규범 및 환경라벨링 관련 무역 분쟁사례분석을 중심으로)

  • Sang, Min-Kyung;Han, Sung-Ae;Park, Sun-Hyo
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.1-13
    • /
    • 2019
  • With the adoption of the Paris Agreement, a new climate regime is intensifying the global interest in reducing greenhouse gas emissions. In the meantime, Korea is preparing to introduce a new renewable energy carbon certification system in order to activate the use of renewable energy and to reduce carbon emissions in the entire life cycle of manufacturing and disposal of renewable energy facilities. Therefore, this study aims to identify the implications for the introduction of the carbon certification system and to establish a theoretical basis for the system design by examining the status of overseas carbon certification, international trade norms and trade disputes. As a result, carbon emissions certification is being implemented in developed countries such as EU, UK, France, USA and Japan, but only France, Germany and EU have adopted carbon certification for renewable energy sector. The analysis of the WTO TBT Agreement and GATT also confirmed the possibility of a violation of the international trade rules of the carbon certification system and derived nine international technical standards related to carbon certification. Finally, by examining the case of trade disputes related to environmental labeling, the minimum requirements to be considered at the institutional design stage were drawn to eliminate the possibility of trade disputes.

Discrepancy between South Korea's ZEB Certification System and its Real Energy Saving Effects: An Empirical Analysis

  • Kyoungyun Jung;Handon Kim;Minjae Lee;Donggeun Oh;Jimin Kim;Hyounseung Jang
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1314-1314
    • /
    • 2024
  • Since 2017, South Korea has been the first country in the world to implement a national certification system for Zero Energy Buildings (ZEB). This system aims to maximize the energy efficiency of buildings to reduce greenhouse gas emissions and reduce energy consumption in the building sector using renewable energy. To achieve this goal, the ZEB certification system classifies green buildings into five grades based on the energy independence rate. However, the current ZEB certification system based on the energy independence rate is only considered a requirement for building completion, losing its original intent. This study aims to highlight the problems and limitations of the ZEB certification system based on the energy independence rate and to propose an operational plan for the system that can genuinely reduce energy consumption in the building sector. For this, the actual energy consumption and the renewable energy production referenced during the certification of 10 ZEB-certified buildings were quantified and compared with the energy independence rate. The total energy consumption, energy production, life cycle cost, performance coefficient of equipment, and other key indicators were analyzed to evaluate the actual effects of ZEB certification on energy savings. As a result, the simple energy independence rate-based ZEB certification was judged to be inconsistent with the original intent of the system. The ZEB certification system needs to be re-established to reflect the design of systems that can activate and utilize energy savings and renewable energy usage in buildings. Additionally, improvements in the management and inspection systems are necessary to determine how much they contribute to actual reductions in greenhouse gas emissions and energy consumption post-certification.

A Study on the Supply obligations allotment rate of New Renewable Energy in Indoor Gymnasiums with the Application of a Daylighting System (집광채광시스템을 적용한 실내체육관의 신재생에너지 공급의무 분담률에 관한 연구)

  • Park, Yun-Ha;Lee, Yong-Ho;Cho, Young-Hum;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.27-39
    • /
    • 2015
  • Under the goal of analyzing the compulsory supply share of new renewable energy according to the application of a daylighting system to indoor gymnasiums, this study conducted analysis of energy consumption and operation schedule at three indoor gymnasiums in the nation through a survey. The investigator did an Energy Plus simulation on Building A based on the analysis results and analyzed the supply share of new renewable energy in the saving effects of lighting energy according to the application of a daylighting system. As a result, When 92 prism daylighting system were installed in the upper ceiling of a stadium, they were able to meet the criteria for the minimum illumination for official games(Min : 600㏓) and optimum illumination for general games and recreations, thus saving lighting energy during the daytime(09:00~17:00). The resulting saving effects of lighting energy amounted to 44.4% for official games, 57.6% for general games, and 66.7% for recreations. In addition, the daylighting systems had a compulsory supply share of new renewable energy at 2.04% for official games, 2.75% for general games, and 2.62% for recreations, recording an average compulsory supply share of 2.5%.

Design and Implementation of an ESS for Efficient Power Management of Stand-Alone Type Street Lights (효율적 전력 관리를 위한 독립형 가로등의 ESS 설계 및 구현)

  • Kang, Jingu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.2
    • /
    • pp.1-6
    • /
    • 2016
  • Several efforts to replace the use of existing fossil energy resources have already been made around the world. As a result, a new industry of renewable energy has been created, and efficient energy distribution and storage has been promoted intensively. Among the newly explored renewable energy sources, the most widely used one is solar energy generation, which has a high market potential. An energy storage system (ESS) is a system as required. In this paper, the design and implementation of an ESS for the efficient use of power in stand-alone street lights is presented. In current ESS applied to stand-alone street lights, either 12V~24V DC (from solar power) or 110V~220V AC (from commercial power) is used to recharge power in systems with lithium batteries. In this study, an ESS that can support both solar power and commercial power was designed and implemented; it can also perform emergency recharge of portable devices from solar powered street lights. This system can maximize the scalability of ESSes using lithium batteries with efficient energy conversion, with the advantage of being an eco-friendly technology. In a ripple effect, it can also be applied to smart grids, electric vehicles, and new, renewable storage markets where energy storage technology is required.

Assessment of Optimal Constitution Rate of Windturbine and Photovoltaic Sources for Stable Operation of Microgird (마이크로그리드의 안정적 운영을 위한 풍력 및 태양광 발전원 최적 구성 비율 산정 방안 연구)

  • Lee, Su-Mi;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.272-276
    • /
    • 2010
  • Renewable energy sources are considered to be environment-friendly alternatives those are increasingly introduced in the power systems. Microgrid is one of the systems in which renewable sources have a main role as a energy suppliers. Decision of constitution rates of renewable energy sources is very important for the economical and stable operation of microgird systems. In this paper, we present a method to assess an optimal constitution rate of renewable sources especially of windturbine and photovoltaic systems.

Optimization Process Models of CHP and Renewable Energy Hybrid Systems in CES (구역전기 사업시 CHP와 신재생에너지 하이브리드 시스템의 최적공정 모델)

  • Lee, Seung Jun;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.99-120
    • /
    • 2017
  • In SS branch of Korea District Heating Corporation, Combined Heat & Power power plant with 99MW capacity and 98Gcal / h capacity is operated as a district electricity business. In this region, it is difficult to operate the generator due to the problem of surplus heat treatment between June and September due to the economic recession and the decrease in demand, so it is urgent to develop an economical energy new business model. In this study, we will develop an optimized operation model by introducing a renewable energy hybrid system based on actual operation data of this site. In particular, among renewable energy sources, fuel cell (Fuel Cell) power generation which can generate heat and electricity at the same time with limited location constraints, photovoltaic power generation which is representative renewable energy, ESS (Energy Storage System). HOMER (Hybrid Optimization of Multiple Energy Resources) program was used to select the optimal model. As a result of the economic analysis, 99MW CHP combined cycle power generation is the most economical in terms of net present cost (NPC), but 99MW CHP in terms of carbon emission trading and renewable energy certificate And 5MW fuel cells, and 521kW of solar power to supply electricity and heat than the supply of electricity and heat by 99MW CHP cogeneration power, it was shown that it is economically up to 247.5 billion won. we confirmed the results of the improvement of the zone electricity business condition by introducing the fuel cell and the renewable energy hybrid system as the optimization process model.

Current Situation of Renewable Energy Resources Marketing and its Challenges in Light of Saudi Vision 2030 Case Study: Northern Border Region

  • AL-Ghaswyneh, Odai Falah Mohammad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.89-94
    • /
    • 2022
  • The Saudi Vision 2030 defined the directions of the national economy and market towards diversifying sources of income, and developing energy to become less dependent on oil. The study sought through a theoretical review to identify the reality of the energy sector and the areas of investment available in the field of renewable energy. Findings showed that investment in the renewable energy sector is a promising source according to solar, wind, hydrogen, geothermal energy and burning waste than landfill to extract biogas for less emission. The renewable energy sector faces challenges related to technology, production cost, price, quantity of production and consumption, and markets. The study revealed some recommendations providing and suggested electronic marketing system to provide investors and consumers with energy available from renewable sources.

A Study for Integrated Ocean Energy Utilization System (해양에너지의 복합이용시스템에 관한 기초연구)

  • 김현주;홍석원
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.83-86
    • /
    • 2001
  • This paper aims to make a feasibility study and to propose a master plan for the development of "integrated ocean energy utilization system", which utilizes various renewable ocean energies. Fossils energy, as the most important energy resources which are inevitable for the living and industrial development, becomes exhausted and its consumption creates serious environmental problem. It is important to utilize renewable ocean energy for a sustainable and environmentally friendly development. We survey the integrated utilization of ocean energy based on surveyed energy density distribution and propose concepts of integrated ocean energy utilization plant for both onshore and offshore system. The results of this study can support national effort for renewable energy development utilizing integrated ocean energy and refer as a guideline for the technical development of sustainable integrated ocean energy.

  • PDF

A Study on the Successful Introduction of Renewable Portfolio Standards Using Linear Programming Models (선형계획법을 이용한 RPS 제도의 효과적 도입 방안)

  • Lee, Hyeong-Seok;Yang, Seung-Ryong
    • Environmental and Resource Economics Review
    • /
    • v.19 no.1
    • /
    • pp.159-198
    • /
    • 2010
  • The Korean government is planning to introduce the Renewable Portfolio Standard (RPS) system to replace the currently used Feed-in-Tariff (FIT) system which is a subsidy-based mechanism to foster the renewable energy industry. The RPS system is a market-oriented system in which the power companies are obliged to use renewable energy sources to produce electricity by a certain ratio of their production level. They can either produce for themselves or simply purchase the REC (renewable energy certificate) in the market to implement. The objective of this article is to compare the RPS system with the current FIT system in terms of the implementing cost to achieve the policy goal to expand the share of renewable energy m the total power generation. The analysis is conducted using Linear Programming models. The results of this study imply several policy suggestions to successfully introduce the RPS system.

  • PDF

Life Cycle Cost Analysis about Renewable Energy Facilities Combination of Photovoltaic system, Solar thermal system and Geothermal system (태양광발전, 태양열 급탕, 지열시스템의 신재생에너지설비 조합에 관한 LCC 분석)

  • Chun, Sang Hyun;Ahn, Jang-Won;Kim, Wonwoo;Cho, Seung-Yun
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.105-112
    • /
    • 2012
  • When a building is planned and designed, the design should be able to minimize the cost during the whole life cycle of the building. This study has begun to analyze LCC about the alternative design which is applicable to renewable energy facility construction. It is reviewed domestic and foreign papers about the trend of LCC technology and it is determined the analytical method to analyze the LCC of renewable energy. Regarding the review of alternatives, it is chosen the three alternatives which are able to designed combing the renewable energy facilities and it is performed the LCC analysis about each alternative. Alternative 1 is Photovoltaic + Solar Thermal + Photovoltaic /Wind Power, Alternative 2 is Geothermal + Photovoltaic, and Alternative 3 is Photovoltaic + Solar Thermal. The LCC analysis is present value method, its analytical period is 40 years and it is applied 3.2% of real discount rate. As a result, it is proved that Alternative 1 and Alternative 3 are not able to collectible the early investment cost during the analytical period and Alternative 2 is analyzed that its pay-back period of early investment cost is about 31 years. As the final outcome of this study on case analysis, it is more advantageous to use the combination of Geothermal and Photovoltaic energy than to use the other combination in LCC aspect.