• Title/Summary/Keyword: Renewable Energy Potential

Search Result 416, Processing Time 0.023 seconds

The Economic Aspect of Gas Hydrate Development (경제성 측면에서의 가스하이드레이트 개발 가치)

  • Kim, Hwa-Young;Lee, Dong-Jun;Heo, Eun-Nyeong
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.61-67
    • /
    • 2008
  • The price to import natural gas continues to rise, as well as the rate of its domestic consumption. This research examined the economic feasibility of domestically developing and producing gas hydrate to substitute imported natural gas. Today, the industry still lacks the technology to commercially produce gas hydrate. However, if the gas hydrate is able to be commercially produced domestically and replace imported natural gas, the annual economic benefit for the Republic of Korea would be 211 - 833 USD/ton. Gas hydrate is rated as a high value investment by the gas industry since the potential annual profit can reach over 150USD/ton. The commercial value of gas hydrate development will increase as long as the natural gas market continues to expand and its consumption increase remains steady. With further development of technology, one can anticipate an even higher expected return on the investment.

  • PDF

Numerical Study on the Dissolution Behavior of $CO_2$ Hydrate for Global Warming Mitigation (지구온난화 저감을 위한 이산화탄소 하이드레이트 용해거동에 대한 수치적 연구)

  • Kim, Nam-Jin;Seo, Hyang-Min;Chun, Won-Gee
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.4-11
    • /
    • 2006
  • The idea of $CO_2$ sequestration in the ocean is proposed to be an effective mitigation strategy to counteract potential global warming due to the greenhouse effect. Therefore, in the present study, calculations of the dissolution behavior of $CO_2$ hydrate when liquid carbon dioxide is released at 1,000m and 1,500m in depth are performed. The results show the liquid $CO_2$ injected in the ocean becomes $CO_2$ bubble at between 350 m in depth, and the injection from a moving ship is a more effective method of dissolution than through a fixed pipeline. It so also noted that the ultimate plume generated from $CO_2$ bubbles repeats expansion and shrinking due to the peeling from a fixed pipeline.

  • PDF

Review of Trends in Wind Energy Research Publications in Journal of the Korean Solar Energy Society (태양에너지학회 논문집의 풍력에너지 연구동향 분석)

  • Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • The Journal of the Korean Solar Energy Society is the first journal in South Korea that adopts wind energy as one of its subjects. Since 2000, more than 140 papers on wind energy have been published in the journal, which accounts for 8.5% of the total publication. However, in recent years, the number of published papers on wind energy has been decreasing steadily, and a reason for this decline is the significant dependence on a few specific institutions and authors. In this study, wind energy subjects were classified using the frequency analysis of the subject words extracted from the title, keywords, and abstract of wind energy papers using the text mining technique. In addition, the Korea Citation Index was used to perform quantitative level evaluation by subject and institution and to analyze the trends and characteristics of the wind energy field. Therefore, it was identified that in terms of the number of publications and citations, the main subject areas were resource/micrositing and policy/potential.

Condition Monitoring System of Wind Turbine (풍력발전기를 위한 상태 모니터링 기술)

  • Hameed, Z.;Hong, Y.S.;Ahn, S.H.;Cho, Y.M.;Song, C.K.;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.395-399
    • /
    • 2007
  • Renewable energy sources such as wind energy is copiously available without any limitation. Wind turbines are used to tap the potential of wind energy which is available in millions of megawatt. Reliability of wind turbine is critical to extract this maximum amount of energy from the wind. We reviewed different techniques, methodologies, and algorithms developed to monitor the performance of wind turbine as well as for an early fault detection to keep away the wind turbines from catastrophic conditions due to sudden breakdowns. To keep the wind turbine in operation, implementation of Condition Monitoring System (CMS) is paramount, and for this purpose ample knowledge of these types of system is mandatory. So, an attempt has been made in this direction to review maximum approaches related to CMS in this piece of writing.

  • PDF

Policy implications for up-scaling of off-grid solar PV for increasing access to electricity in rural areas of Nepal: Best practices and lessons learned

  • Sapkota, Surya Kumar
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.6 no.1
    • /
    • pp.8-20
    • /
    • 2020
  • Nepal has huge potential of hydro and other renewable energy resources including solar energy. However, only 70% of the total population have access to electricity despite the long history of hydropower development in the country. Still more than 37% population in rural areas and around 73% population in Karnali Province, one of the least developed provinces, are living without access to electricity despite taking several initiatives and implementing various policies by government supporting electrification in off-grid rural areas. Government together with donors and private sector has extensively been promoting the off-grid solar photovoltaic (PV) echnology in un-electrified areas to increase electricity access. So far, more than 900,000 households in rural areas of Nepal are getting electricity from stand-alone solar PV systems. However, there are many challenges including financial, technical, institutional, and governance barriers in Nepal. This study based on extensive review of literatures and author's own long working experiences in renewable energy sector in Nepal, shares the best practices and lessons of off-grid solar PV for increasing access to electricity in rural areas of Nepal. This study suggests that flexible financial instruments, financial innovations, bundling of PV systems for concentrating energy loads, adopting standards process, local capacity building, and combination of technology, financing and institutional aspects are a key for enhancing effectiveness of solar PV technology in rural areas of Nepal.

Optimum solar energy harvesting system using artificial intelligence

  • Sunardi Sangsang Sasmowiyono;Abdul Fadlil;Arsyad Cahya Subrata
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.996-1006
    • /
    • 2023
  • Renewable energy is promoted massively to overcome problems that fossil fuel power plants generate. One popular renewable energy type that offers easy installation is a photovoltaic (PV) system. However, the energy harvested through a PV system is not optimal because influenced by exposure to solar irradiance in the PV module, which is constantly changing caused by weather. The maximum power point tracking (MPPT) technique was developed to maximize the energy potential harvested from the PV system. This paper presents the MPPT technique, which is operated on a new high-gain voltage DC/DC converter that has never been tested before for the MPPT technique in PV systems. Fuzzy logic (FL) was used to operate the MPPT technique on the converter. Conventional and adaptive perturb and observe (P&O) techniques based on variables step size were also used to operate the MPPT. The performance generated by the FL algorithm outperformed conventional and variable step-size P&O. It is evident that the oscillation caused by the FL algorithm is more petite than variables step-size and conventional P&O. Furthermore, FL's tracking speed algorithm for tracking MPP is twice as fast as conventional P&O.

Design of a Monolithic Photoelectrochemical Tandem Cell for Solar Water Splitting with a Dye-sensitized Solar Cell and WO3/BiVO4 Photoanode

  • Chae, Sang Youn;Jung, Hejin;Joo, Oh-Shim;Hwang, Yun Jeong
    • Rapid Communication in Photoscience
    • /
    • v.4 no.4
    • /
    • pp.82-85
    • /
    • 2015
  • Photoelectrochemical cell (PEC) is one of the attractive ways to produce clean and renewable energy. However, solar to hydrogen production via PEC system generally requires high external bias, because of material's innate electronic band potential relative to hydrogen reduction potential and/or charge separation issue. For spontaneous photo-water splitting, here, we design dye-sensitized solar cell (DSSC) and their monolithic tandem cell incorporated with a $BiVO_4$ photoanode. $BiVO_4$ has high conduction band edge potential and suitable band gap (2.4eV) to absorb visible light. To achieve efficient $BiVO_4$ photoanode system, electron and hole mobility should be improved, and we demonstrate a tandem cell in which $BiVO_4/WO_3$ film is connected to cobalt complex based DSSC.

Assessment of Distributed and Dynamic Potential of Photovoltaic Systems in Urban Areas (태양광 발전 시스템의 시공간적 잠재성 평가 소프트웨어 개발)

  • Choi, Yosoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • This study presents a new method for coupling ArcGIS (popular GIS software) with TRaNsient SYstems Simulation (TRNSYS, reference software for researchers and engineers around the world) to use capabilities of the 4 and 5-parameter PV array performance models within the ArcGIS environment. Using the validated and industry-proven solar energy simulation models implemented in TRNSYS and other built-in ArcGIS functionalities, dynamic characteristics of distributed PV potential in terms of hourly, daily or monthly power outputs can be investigated with considerations of diverse options in selecting and mounting PV panels. In addition, the proposed method allows users to complete entire procedures in a single framework (i.e., a preliminary site survey using 3D building models, shading analyses to investigate usable rooftop areas with considerations of different sizes and shapes of buildings, dynamic energy simulation to examine the performances of various PV systems, visualization of the simulation results to understand spatially and temporally distributed patterns of PV potential). Therefore tedious tasks for data conversion among multiple softwares can be significantly reduced or eliminated. While the programming environment of TRNSYS is proprietary, the redistributable executable, simulation kernel and simulation engine of TRNSYS can be freely distributed to end-users. Therefore, GIS users who do not have a license of TRNSYS can also use the functionalities of solar energy simulation models within ArcGIS.

  • PDF

Economic Analysis of a Residential Ground-Source Heat Pump System (단독주택용 지열원 열펌프 시스템의 경제성 분석)

  • Sohn, Byong-Hu;Kang, Shin-Hyung;Lim, Hyo-Jae
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.31-37
    • /
    • 2007
  • Because of their low operating and maintaining costs, ground-source heat pump(GSHP) systems are an increasingly popular choice for providing heating, cooling and water heating to public and commercial buildings. Despite these advantages and the growing awareness, GSHP systems to residential sectors have not been adopted in Korea until recently. A feasibility study of a residential GSHP system was therefore conducted using the traditional life cycle cost(LCC) analysis within the current electricity price framework and potential scenarios of that framework. As a result, when the current residential electricity costs for running the GSHP system are applied, the GSHP system has weak competitiveness to conventional HV AC systems considered. However, when the operating costs are calculated in the modified price frameworks of electricity, the residential GSHP system has the lower LCC than the existing cooling and heating equipments. The calculation results also show that the residential GSHP system has lower annual prime energy consumption and total pollutant emissions than the alternative HVAC systems considered in this work.

  • PDF

Low-cost Contact formation of High-Efficiency Crystalline Silicon Solar Cells by Plating

  • Kim D. S.;Lee E. J.;Kim J.;Lee S. H.
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.37-43
    • /
    • 2005
  • High-efficiency silicon solar cells have potential applications on mobile electronics and electrical vehicles. The fabrication processes of the high efficiency cells necessitate com placated fabrication precesses and expensive materials. Ti/Pd/Ag metal contact has been used only for limited area In spite of good stability and low contact resistance because of Its expensive material cost and precesses. Screen printed contact formed by Ag paste causes a low fill factor and a high shading loss of commercial solar cells because of high contact resistance and a low aspect ratio. Low cost Ni/Cu metal contact has been formed by using a low cost electroless and electroplating. Nickel silicide formation at the interface enhances stability and reduces the contact resistance resulting In an energy conversion efficiency of $20.2\%\;on\;0.50{\Omega}cm$ FZ wafer. Tapered contact structure has been applied to large area solar cells with $6.7\times6.7cm^2$ in order to reduce power losses by the front contact The tapered front metal contact Is easily formed by the electroplating technique producing $45cm^2$ solar cells with an efficiency of $21.4\%$ on $21.4\%\;on\;2{\Omega}cm$ FZ wafer.

  • PDF