• Title/Summary/Keyword: Renewable Energy Policy

Search Result 422, Processing Time 0.024 seconds

A Study on the Application of BIPV for the Spread of Zero Energy Building (제로에너지 건축물 확산을 위한 건물 일체형 태양광 적용방안 연구)

  • Park, Seung-Joon;Jeon, Hyun-Woo;Lee, Seung-Joon;Oh, Choong-Hyun
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.189-199
    • /
    • 2021
  • In order to increase the self-reliance rate of new and renewable energy in order to respond to the mandatory domestic zero-energy buildings, the taller the building, the more limited the site area, and installing PV modules on the roof is not enough. Therefore, BIPV (Building integrated photovoltaic, hereinafter BIPV) is the industry receiving the most attention as a core energy source that can realize zero-energy buildings. Therefore, this study conducted a survey on the problems of the BIPV industry in a self-discussing method for experts with more than 10 years of experience of designers, builders, product manufacturers, and maintainers in order to suggest the right direction and revitalize the BIPV industry. Industrial problems of BIPV adjustment are drawn extention range of standard and certification for products, range improvement for current small condition of various kind productions, need to revise standards for capable of accomodating roof-type, color-module and louver-module, necessary of barrier in flow of foreign modules into korea through domestic certification mandatory, difficulty in obtaining BIPV information, request to prevent confusion among participants by exact guidelime about architectural application part of BIPV, and lack of the BIPV definition clearness, support policy, etc. Based on the improvements needed for the elements, giving change and competitiveness impacts aims to present and propose counter measures and direction.

Overall Performance characteristic for 300MW Taean IGCC Plant (300MW 태안 IGCC 플랜트 종합성능 특성)

  • Kim, Hakyong;Kim, Jaehwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.129.2-129.2
    • /
    • 2010
  • As a part of the government renewable energy policy, KOWEPO is constructing 300MW IGCC plant in Taean. IGCC plant consists of gasification block, air separation unit and power block, which performance test is separately conducted. Overall performance test for IGCC plant is peformed to comply with ASME PTC 46. Major factors affected on the overall efficiency for IGCC plant are external conditions, each block performance(gasification, ASU, power block), water/steam integration and air integration. Performance parameters of IGCC plant are cold gas efficiency, oxygen consumption, sensible heat recovery of syngas cooler for gasification block and purity of oxygen, flow amount of oxygen and nitrogen, power consumption for air separation unit and steam/water integration among the each block. The gas turbine capacity applied to the IGCC plant is 20 percent higher than NGCC gas turbine due to the low caloric heating value of syngas, therefor it is possible to utilize air integration between gas turbine and air separation unit to improve overall efficiency of the IGCC plant and there is a little impact on the ambient condition. It is very important to optimize the air integration design with consideration to the optimized integration ratio and the reliable operation. Optimized steam/water integration between power block and gasification block can improve overall efficiency of IGCC plant where the optimized heat recovery from gasification block should be considered. Finally, It is possibile to achieve the target efficiency above 42 percent(HHV, Net) for 300MW Taean IGCC plant by optimized design and integration.

  • PDF

The experimental study on the emission characteristics of the coal gas in the condition of high pressure combustion (석탄가스 고압연소시 배기가스 배출특성에 관한 실험적 연구)

  • Hong, Sung Joo;Lee, Min Chul;Kim, Ki Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.134-134
    • /
    • 2010
  • Recently, the interest of the study about IGCC(Integrated Gasification Combined Cycle), one of New & Renewable Energy technologies, bas been increased due to the United Nations Framework Convention on Climate Change, the Low Carbon Green Growth policy, etc. Also, with this interest of IGCC, the study on the gas turbine utilizing the synthetic gas is performing actively. In the study of the gas turbine characteristic, the power performance and the combustion efficiency are mainly discussed and also the concern about the exhaust gas is being taken care of due to the increasing awareness of the environment. With this, we would like to go over the exhaust gas emission characteristic by the synthetic gas inflow in this test. In order to conduct such a test, we constructed a synthetic gas supplying system to supply the synthetic gases ($H_2$: hydrogen, $N_2$: nitrogen, CO: carbon monoxide, $CO_2$: carbon dioxide, and $H_2O$: steam) quantitatively and this combustion test was conducted by controlling the supplied synthetic gases artificially. The concentration of the exhaust gases appeared variously depending on the differences of the inflow nitrogen amount and the steam amount, whether or not the carbon dioxide flow in and so on. The results of the test can be able to be utilized for the IGCC study by understanding the exhaust gas emission characteristic of the coal gas turbine by synthetic gas composition.

  • PDF

The Estimation of Greenhouse Gas Reductions from Renewable Energy (Photovoltaic, Wind Power) : A Case Study in Korea (재생에너지(태양광, 풍력) 기술의 온실가스 감축산정: 국내를 대상으로)

  • Jung, Jaehyung;Kim, Kiman
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.729-737
    • /
    • 2020
  • This study estimates the greenhouse gas (GHG) emissions reduction resulting from photovoltaic and wind power technologies using a bottom-up approach for an indirect emission source (scope 2) in South Korea. To estimate GHG reductions from photovoltaic and wind power activities under standard operating conditions, methodologies are derived from the 2006 IPCC guidelines for national GHG inventories and the guidelines for local government greenhouse inventories of Korea published in 2016. Indirect emission factors for electricity are obtained from the 2011 Korea Power Exchange. The total annual GHG reduction from photovoltaic power (23,000 tons CO2eq) and wind power (30,000 tons CO2eq) was estimated to be 53,000 tons CO2eq. The estimation of individual GHGs showed that the largest component is carbon dioxide, accounting for up to 99% of the total GHG. The results of estimation from photovoltaic and wind power were 63.60% and 80.22% of installed capacity, respectively. The annual average GHG reductions from photovoltaic and wind power per year per unit installed capacity (MW) were estimated as 549 tons CO2eq/yr·MW and 647 tons CO2eq/yr·MW, respectively. Finally, the results showed that the level of GHG reduction per year per installed capacity of photovoltaic and wind power is 62% and 42% compared to the CDM project, respectively.

A Study on the Formation Plan of Green Cluster by Sectoral Type for the Enhancement of Regional Competitiveness in Green Industry (녹색산업의 지역경쟁력 확보를 위한 산업유형별 클러스터 형성방안에 관한 연구)

  • Kim, Soo-Kyung;Lee, Joo-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1081-1089
    • /
    • 2013
  • The purpose of this paper is to suggest the formation plan of green cluster for the enhancement of green industry competitiveness in Korea. For this reason, this paper has the analysis to find out regional competitiveness and effective factors in the green industry. The major findings are as follows. First, the renewable energy industry was competitive at Gyeonggi, Gyeongnam, Chungbuk, Chungnam, Ulsan, Jeonnam, and the carbon reduction industry was competitive at Ulsan, Gyeonggi, Gyeongbuk,, Chungnam, Seoul, Chungbuk, Inchon. Second, the most important factors of the renewable energy industry was factor condition, such as business, labor, research and development; while in the carbon reduction industry was sector of structure and rivalry, such as performance, policy and institution, market share, industry specialization. Third, it showed that the green industry was more competitive at the local area with the better industrial infrastructure. So, we need to focus on the green of existing industry-infrastructure, and the strategy of selection and concentration, for the enhancement of green industry competitiveness in Korea.

Measurement of the Greenhouse Gas Emission Benefits from the Marine Bio-Energy Development Project (해양바이오에너지 개발사업의 온실가스 저감편익 추정)

  • Kim, Tae-Young;Pyo, Hee-Dong;Kim, Hye-Min;Park, Se-Hun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.217-225
    • /
    • 2013
  • It is time to develop new renewable energy that could fundamentally replace fossil fuel, which has been increasingly needed due to environmental pollution and energy security. Korean marine bio-energy development project is planned to produce 50% of total bioenergy. This study attempts to measure the greenhouse gas emission reduction benefits of marine bio-energy development project through contingent valuation method. Single bounded dichotomous choice (SBDC) is applied with spike model. The results show that the average willingness to pay are estimated to be KRW 4,190 at SBDC, per household per year. If the result has been expanded to the region which is survey conducted, KRW 50.1 billion annually. These quantitative information can be usefully utilized in the cost benefit analysis to implement project and policy-making for the industrialization of marine bio-energy development project.

Study of Oil Palm Biomass Resources (Part 3) - Torrefaction of Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 III - 오일팜 바이오매스의 반탄화 연구 -)

  • Cho, Hu-Seung;Sung, Yong Joo;Kim, Chul-Hwan;Lee, Gyeong-Seon;Yim, Su-Jin;Nam, Hyeo-Gyeong;Lee, Ji-Young;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.1
    • /
    • pp.18-28
    • /
    • 2014
  • Renewable Portfolio Standards(RPS) is a regulation that requires a renewable energy generated from eco-friendly energy sources such as biomass, wind, solar, and geothermal. The RPS mechanism generally is an obligatory policy that places on electricity supply companies to produce a designated fraction of their electricity from renewable energies. The domestic companies to supply electricity largely rely on wood pellets in order to implement the RPS in spite of undesirable situation of lack of wood resources in Korea. This means that the electricity supply companies in Korea must explore new biomass as an alternative to wood. Palm kernel shell (PKS) and empty fruit bunch (EFB) as oil palm wastes can be used as raw materials used for making pellets after their thermochemical treatment like torrefaction. Torrefaction is a pretreatment process which serves to improve the properties including heating value and energy densification of these oil palm wastes through a mild pyrolysis at temperature typically ranging between 200 and $300^{\circ}C$ in the absence of oxygen under atmospheric pressure. Torrefaction of oil palms wastes at above $200^{\circ}C$ contributed to the increase of fixed carbon with the decrease of volatile matters, leading to the improvement of their calorific values over 20.9 MJ/kg (=5,000 kcal/kg) up to 25.1 MJ/kg (=6,000 kcal/kg). In particular, EFB sensitively responded to torrefaction because of its physical properties like fiber bundles, compared to PKS and hardwood chips. In conclusion, torrefaction treatment of PKS and EFB can greatly contribute to the implement of RPS of the electricity supply companies in Korea through the increased co-firing biomass with coal.

Evaluating Economic Feasibility of Solar Power Generation Under the RPS System Using the Real Option Pricing Method: Comparison Between Regulated and Non-regulated Power Providers (실물옵션을 활용한 RPS 실시에 따른 태양광 발전의 경제성 평가: 공급의무 발전사와 일반 발전사와의 비교)

  • Kim, Eun-Man;Kim, Myung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.690-700
    • /
    • 2013
  • This study reviewed how the changes of the government policy on solar power generation projects affected the annual mandatory quotas of the regulated power providers under the RPS (renewable portfolio standard) system and analysed economic feasibility of the investment for meeting their quotas as compared to the case of non-regulated power providers. The analysis results showed that under the discount rate of 7.5%, which was used for the annual national electricity plans for the recent years, both the regulated and non-regulated power providers achieved economic feasibility under both the NPV (net present value) method and the real option pricing method. It was also shown that higher profitability was attained by non-regulated power providers than by their regulated counterparts, which can be attributable to the fact that regulated providers are required to out-source 50% of the total quota. The results of this study are considered to be useful for establishing a meaningful mid term or long term strategy for the future of solar power generation linked to the current RPS system.

Research Trend Analysis for Smart Grid using Social Network Analysis (사회연결망분석을 활용한 스마트그리드 연구동향 분석)

  • Na, Sang-Tae;Ahn, Joo-Eon;Jung, Min-Ho;Kim, Ja-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1697-1704
    • /
    • 2017
  • As the power grid has been changed to a smart grid, existing power technologies are evolving into convergence technology through interdisciplinary research. According to the government policy to increase the proportion of renewable energy to 20% by 2030, the speed seems to be accelerating. This study analyzes the relationship between research technologies in order to grasp research trends of smart grid technology. To this end, we analyze the relationship between keywords extracted from topic modeling using social network analysis methodology. This is because, in the field where interdisciplinary research such as smart grid is active, each research topic is not independent, but research technologies emerging in one topic coexist in different topics, and linkage between research technologies can be important information. Therefore, this study can contribute to the analysis of research trend as it can be used as a package tool together with a topic modeling methodology.

Study on Thermal Efficiency according to Configuration Change and Contact Resistance of Solar Collector with Single Evacuated Tube-type (단일진공관 태양열집열기의 형상변화 및 접촉저항에 따른 집열효율 연구)

  • Choi, Bo-Won;Yang, Young-Joon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.189-195
    • /
    • 2014
  • The use of solar energy among renewable energy tends to increase because of its infinity and cleanness of resources. Even though the consumption rate of solar energy in our country is still low, however, in recent years, the research for solar energy have been widely conducted due to policy support of government. This study was performed to investigate the efficiency of heat collection using solar collector with single evacuated tube-type. As the results, the temperature of radiation fin for solar collector with single evacuated tube-type was lower in spite of high temperature of heat pipe compared that of double evacuated tube-type. In order to increase the efficiency of heat collection, it was confirmed that the loss of heat collection due to contact resistance as well as performance improvement for solar collector should be decreased.