• Title/Summary/Keyword: Renewable Energy Policy

Search Result 418, Processing Time 0.029 seconds

A Study on the Flow Characteristics around Tidal Current Turbine (조류발전용 터빈 주위의 유동 특성에 관한 연구)

  • Kim, Bu-Gi;Yang, Chang-Jo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.610-616
    • /
    • 2012
  • All the countries in the world is currently facing the full scale of energy-climate era currently, and making strong energy policy that will lead to green growth of the future energy resources by utilizing renewable energy as the basis of entering the advanced country becomes the goal of development that satisfies the demand for energy in 21st century. Recently, ocean energy attracted the attention along with the necessity of developing renewable energy. Ocean energy is the one of most prominent recyclable and clean resources that has not been developed yet. So, it is highly required to develop good tidal current energy conversion system in coastal area. The inflow angle that acts against tidal current turbine, seabed effect and the change of efficiency along the occurrence of cavitation were investigated through the wake flow characteristics in this study. Power coefficient degradation by seabed effect did not appear in the condition of this calculation. Efficiency degradation appeared from above $10^{\circ}$ regarding inflow angle and power coefficient was calculated as lower by 7 % at $45^{\circ}$. Torque and power coefficient increased as inflow velocity rose, but power coefficient degradation appeared from above 3m/s when the cavitation happened. So, it was recognized that the larger inflow angle and occurrence of cavitation become the reason for power degradation through the flow characteristics.

A Review on R&D and Commercialization of Oil Recovery from Waste Plastics by Pyrolysis (폐합성수지(廢合成樹脂)류의 열분해(熱分解) 유화(油化) 기술(技術) 동향(動向))

  • Shin, Dae-Hyun;Nho, Nam-Sun;Kim, Sung-Soo;Kim, Kwang-Ho;Jeon, Sang-Gu
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.3-12
    • /
    • 2010
  • Recently, the waste energy utilization has become the main interest in energy industries, due to high oil prices, the low carbon, green growth policy and the RPS (Renewable Portfolio Standards) of our government. Therefore, energy guzzling companies such as district heating companies, textile industries are replacing energy to RDP/RPF. Especially, a lot of big companies are carrying out survey to commercialize the waste plastics pyrolysis technologies developed in Korea. In this paper, status of the pyrolysis technology of Korea were reviewed overall including basis of technology, waste plastics resources, research & development, and commercialization.

A Fuel Cell Simulator for Control Logic Verification and Operator Training (제어로직 검증 및 운전원 훈련용 연료전지 시뮬레이터)

  • Maeng, Jwayoung;Kim, Sungho;Jung, Wonhee;Kang, Seungyup;Hong, Sukkyu;Lee, Sekyoung;Yook, Simkyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • This research presents a fuel cell simulator for control logic verification and operator training. Nowadays, power industries are focusing on clean energy as a response to new policy. The fuel cell can be the solution for clean energy, but operating technology is not well developed compared to other conventional power plans because of its short history. Therefore we need a simulator to verify the new control strategy and train operators, because the price of a real fuel cell system is too high and mechanically weak to be used for these kind of purposes. To develop the simulator, a 300 KW MCFC(Molten Carbonate Fuel Cell) system was modeled with stack, BOPs(pre-reformer, steam generator, etc) and mechanical components(valves, pipes, pumps, blowers, etc). The process model was integrated to emulated control system and HMI(Human Machine Interface). A static load and open loop tests were conducted for verifying the accuracy of the process model, since it is the most important part in the simulation. After verifying the process model, an automatic load change and start-up tests were conducted to verify the performance of a new control strategy(logic and functional loops).

  • PDF

A Study on the Participation of Virtual Power Plant Based Technology Utilizing Distributed Generation Resources in Electricity Market (분산발전자원을 활용한 가상발전소 기반 기술의 전력시장 참여 방안에 대한 연구)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.94-100
    • /
    • 2016
  • A virtual power plant (VPP) technology is a cluster of distributed generation installations. VPP system is that integrates several types of distributed generation sources, so as to give a reliable overall power supply. Virtual power plant systems play a key role in the smart grids concept and the move towards alternative sources of energy. They ensure improved integration of the renewable energy generation into the grids and the electricity market. VPPs not only deal with the supply side, but also help manage demand and ensure reliability of grid functions through demand response (DR) and other load shifting approaches in real time. In this paper, utilizing a variety of distributed generation resources(such as emergency generator, commercial generator, energy storage device), activation scheme of the virtual power plant technology. In addition, through the analysis of the domestic electricity market, it describes a scheme that can be a virtual power plant to participate in electricity market. It attempts to derive the policy support recommendation in order to obtain the basics to the prepared in position of power generation companies for the commercialization of virtual power plant.

The Investigation of Problems for Next Generation Energy System during Existing Urban Plan Stage (기존 도시계획 단계에서 차세대에너지시스템 적용시 문제점 검토)

  • Park, Jin-Young;Kim, Sam-Uel;Park, Yool;Lee, Sang-Jin;Lee, Jurng-Jae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.190-195
    • /
    • 2009
  • Since the industrial revolution, the global environmental problems such as greenhouse gas accumulation and the average temperature increase have caused people's attention. 'Low Carbon, Green Growth' was presented to cope with these global concerns, as one of main policies of 2008 in Korea. The paradigm of a green urban development is started to concern the whole city's energy problems owing to realize 'Low Carbon, Green Growth' in the urban side. The government established a nation's basic energy plan for 20 years, and some local cities made efforts to develop new renewable energy such as the solar, wind and water energy which are suitable to each city's character. As a part of these efforts, the concept of U-Eco city is newly appeared to reflect upon ubiquitous technique, urban ecology and the next generation energy system. However, urban plan is difficult to adopt this next generation energy system with existing laws, regulations and technical systems. The new executive and systematic system is needed to realize the U-Eco city U-Eco for the management of an efficient city. In this study, the authors investigate the concept of the next generation energy system and U-Eco city to realize the energy-efficient city plan and analyze problems to occur during the application of them in an existing city plan. Then, the authors show the remedies to deal with occurred problems.

  • PDF

온실가스 감축에 대한 기술진보와 탄소세수 환원의 경제적 파급효과

  • O, Jin-Gyu;Jo, Gyeong-Yeop
    • Environmental and Resource Economics Review
    • /
    • v.21 no.2
    • /
    • pp.371-416
    • /
    • 2012
  • This study has developed Computable General Equilibrium (CGE) model reflecting endogenous growth economic theory, with the aim of analyzing double dividend hypothesis. This study analyzes possibility of economic growth and environmental improvement at the same time when government recycles the revenue of carbon tax to reduce existed taxes such as consumption tax, labor income tax, corporate tax. It also assesses the case of subsidy on R&D investment of renewable energy. With new and renewable generation technology adopted and disseminated, GDP loss would be lessened to a great degree. Tax recycling would provide economic gain by reducing distortion existed in the existing fiscal structure. The magnitude of economic gains from carbon tax recycling is biggest for recycling into corporate tax, and labor income tax, and then consumption tax in this order. It is also shown that double dividend effects occur in dynamic terms when government uses a carbon tax revenue to subsidize on R&D investment. At the end of the analysis period, emissions reduction would not result in GDP loss but in GDP gain. In particular, recycling into R&D increase would produce the largest and fastest GDP gain. Thus, implementing emissions reduction target would require careful consideration of economic effects by various policy instrument, including carbon tax.

  • PDF

A Study on the Application of BIPV for the Spread of Zero Energy Building (제로에너지 건축물 확산을 위한 건물 일체형 태양광 적용방안 연구)

  • Park, Seung-Joon;Jeon, Hyun-Woo;Lee, Seung-Joon;Oh, Choong-Hyun
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.189-199
    • /
    • 2021
  • In order to increase the self-reliance rate of new and renewable energy in order to respond to the mandatory domestic zero-energy buildings, the taller the building, the more limited the site area, and installing PV modules on the roof is not enough. Therefore, BIPV (Building integrated photovoltaic, hereinafter BIPV) is the industry receiving the most attention as a core energy source that can realize zero-energy buildings. Therefore, this study conducted a survey on the problems of the BIPV industry in a self-discussing method for experts with more than 10 years of experience of designers, builders, product manufacturers, and maintainers in order to suggest the right direction and revitalize the BIPV industry. Industrial problems of BIPV adjustment are drawn extention range of standard and certification for products, range improvement for current small condition of various kind productions, need to revise standards for capable of accomodating roof-type, color-module and louver-module, necessary of barrier in flow of foreign modules into korea through domestic certification mandatory, difficulty in obtaining BIPV information, request to prevent confusion among participants by exact guidelime about architectural application part of BIPV, and lack of the BIPV definition clearness, support policy, etc. Based on the improvements needed for the elements, giving change and competitiveness impacts aims to present and propose counter measures and direction.

Overall Performance characteristic for 300MW Taean IGCC Plant (300MW 태안 IGCC 플랜트 종합성능 특성)

  • Kim, Hakyong;Kim, Jaehwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.129.2-129.2
    • /
    • 2010
  • As a part of the government renewable energy policy, KOWEPO is constructing 300MW IGCC plant in Taean. IGCC plant consists of gasification block, air separation unit and power block, which performance test is separately conducted. Overall performance test for IGCC plant is peformed to comply with ASME PTC 46. Major factors affected on the overall efficiency for IGCC plant are external conditions, each block performance(gasification, ASU, power block), water/steam integration and air integration. Performance parameters of IGCC plant are cold gas efficiency, oxygen consumption, sensible heat recovery of syngas cooler for gasification block and purity of oxygen, flow amount of oxygen and nitrogen, power consumption for air separation unit and steam/water integration among the each block. The gas turbine capacity applied to the IGCC plant is 20 percent higher than NGCC gas turbine due to the low caloric heating value of syngas, therefor it is possible to utilize air integration between gas turbine and air separation unit to improve overall efficiency of the IGCC plant and there is a little impact on the ambient condition. It is very important to optimize the air integration design with consideration to the optimized integration ratio and the reliable operation. Optimized steam/water integration between power block and gasification block can improve overall efficiency of IGCC plant where the optimized heat recovery from gasification block should be considered. Finally, It is possibile to achieve the target efficiency above 42 percent(HHV, Net) for 300MW Taean IGCC plant by optimized design and integration.

  • PDF

The experimental study on the emission characteristics of the coal gas in the condition of high pressure combustion (석탄가스 고압연소시 배기가스 배출특성에 관한 실험적 연구)

  • Hong, Sung Joo;Lee, Min Chul;Kim, Ki Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.134-134
    • /
    • 2010
  • Recently, the interest of the study about IGCC(Integrated Gasification Combined Cycle), one of New & Renewable Energy technologies, bas been increased due to the United Nations Framework Convention on Climate Change, the Low Carbon Green Growth policy, etc. Also, with this interest of IGCC, the study on the gas turbine utilizing the synthetic gas is performing actively. In the study of the gas turbine characteristic, the power performance and the combustion efficiency are mainly discussed and also the concern about the exhaust gas is being taken care of due to the increasing awareness of the environment. With this, we would like to go over the exhaust gas emission characteristic by the synthetic gas inflow in this test. In order to conduct such a test, we constructed a synthetic gas supplying system to supply the synthetic gases ($H_2$: hydrogen, $N_2$: nitrogen, CO: carbon monoxide, $CO_2$: carbon dioxide, and $H_2O$: steam) quantitatively and this combustion test was conducted by controlling the supplied synthetic gases artificially. The concentration of the exhaust gases appeared variously depending on the differences of the inflow nitrogen amount and the steam amount, whether or not the carbon dioxide flow in and so on. The results of the test can be able to be utilized for the IGCC study by understanding the exhaust gas emission characteristic of the coal gas turbine by synthetic gas composition.

  • PDF

The Estimation of Greenhouse Gas Reductions from Renewable Energy (Photovoltaic, Wind Power) : A Case Study in Korea (재생에너지(태양광, 풍력) 기술의 온실가스 감축산정: 국내를 대상으로)

  • Jung, Jaehyung;Kim, Kiman
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.729-737
    • /
    • 2020
  • This study estimates the greenhouse gas (GHG) emissions reduction resulting from photovoltaic and wind power technologies using a bottom-up approach for an indirect emission source (scope 2) in South Korea. To estimate GHG reductions from photovoltaic and wind power activities under standard operating conditions, methodologies are derived from the 2006 IPCC guidelines for national GHG inventories and the guidelines for local government greenhouse inventories of Korea published in 2016. Indirect emission factors for electricity are obtained from the 2011 Korea Power Exchange. The total annual GHG reduction from photovoltaic power (23,000 tons CO2eq) and wind power (30,000 tons CO2eq) was estimated to be 53,000 tons CO2eq. The estimation of individual GHGs showed that the largest component is carbon dioxide, accounting for up to 99% of the total GHG. The results of estimation from photovoltaic and wind power were 63.60% and 80.22% of installed capacity, respectively. The annual average GHG reductions from photovoltaic and wind power per year per unit installed capacity (MW) were estimated as 549 tons CO2eq/yr·MW and 647 tons CO2eq/yr·MW, respectively. Finally, the results showed that the level of GHG reduction per year per installed capacity of photovoltaic and wind power is 62% and 42% compared to the CDM project, respectively.