• Title/Summary/Keyword: Removal mechanism

Search Result 643, Processing Time 0.024 seconds

Treatment of Tooth Discoloration using Microabrasion Technique : Case Report (Microabrasion Techinique을 이용한 치아변색의 치료증례)

  • Park, Hi-Ryoung;Kim, Jong-Soo;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.3
    • /
    • pp.511-517
    • /
    • 1997
  • Tooth discoloration detracts from one's appearance and influences self-image and it is particularly true in children. Therefore, pediatric dentists are required to treat tooth discoloration manifested in children for the normal development of their psycosocial health. Three treatment modalities are currently availabler for the removal of a variety of intrinsic stains from vital teeth. These are enamel microabrasion technique using hydrochloric acid, office bleaching and home bleaching technique with carbamide. Microabrasion technique has several advantages over bleaching in that it is easy to accomplish and does not require multiple office visits or the expensive instruments and the color change seems to be permanent after treatment. The process relies on decalcification, a softening with HCl and then removal of the enamel containing the stain with rubbing. Due to the mechanism of stain removal, this method is indicated for the removal of superficial enamel stains or disc oloration only. We report four successfully treated cases by enamel microabrasion using 15% HCl and pumice. Entire clinical steps are described in detail with some discussions on the outcome.

  • PDF

Removal Efficiencies of Cations in Microcosm-scale Wetlands of Different types (소규모 인공습지에서 습지형태에 따른 양이온 제거 효율의 변이)

  • Kang, Hojeong;Song, Keunyea
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.1
    • /
    • pp.25-28
    • /
    • 2014
  • Constructed wetlands have widely been employed to improve water quality, but only a few studies have assessed removal efficiencies of cations in pond-type and marsh-type wetlands comparatively. This study conveys removal efficiencies of cations in those types of wetlands. High removal efficiencies of $NH_4{^+}$, $K^+$, $Mg^{2+}$ were observed, which appeared to be related to plant uptake and soil absorption. In contrast, release of $Ca^{2+}$ was distinctive in pond-type wetland of which mechanism is yet to be revealed.

Effects of Mixed Oxidizer on the W-CMP Characteristics (혼합 산화제가 W-CMP 특성에 미치는 영향)

  • 박창준;서용진;김상용;이우선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1181-1186
    • /
    • 2003
  • Chemical Mechanical Polishing (CMP) is an essential dielectric planarization in multilayer microelectronic device fabrication. In the CMP process, it is necessary to minimize the extent of surface defect formation while maintaining good planarity and optimal material removal rates. The polishing mechanism of W-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. Thus, it is important to understand the effect of oxidizer on W passivation layer, in order to obtain higher removal rate (RR) and very low non-uniformity (NU %) during W-CMP process. In this paper, we compared the effects of oxidizer or W-CMP process with three different kind of oxidizers with 5 wt% hydrogen peroxide such as Fe(NO$_3$)$_3$, H$_2$O$_2$, and KIO$_3$. The difference in removal rate and roughness of W in stable and unstable slurries are believed to caused by modification in the mechanical behavior of Al$_2$O$_3$ particles in presence of surfactant stabilizing the slurry.

NDMA(N-nitrosodimethylamine) Removal Uising Membrane at Aerobic and Anaerobic Conditions (호기/혐기 조건에서 Membrane을 이용한 NDMA(N-nitrosodimethylamine)제거)

  • Kim, Hui-Joo;Chung, Jin-Wook;Choi, Chang-Kyoo;Kim, Moon-Il
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.417-420
    • /
    • 2008
  • Recently, the interest in NDMA(N-nitrosodimethylamine) has increased due to its recognition as a pollutant by Ontario Ministry of Environment and Energy and California Department of Health Sciences. It is, in fact, one of the DBPs(Disinfection By-products) which appears due to chlorination and is reported to be fatal if exposed continuously to human body. Due to uncertainty in mechanism to remove it, its treatment is not yet carried out. In this experiment, treatment of biological NDMA is carried out by letting it adsorbed on Granular Sludge and then filtering the medium through MF(Microfiltration) and UF(Ultrafiltration) membranes. Granular Sludge is adapted to aerobic and anaerobic conditions for 7 days and the experimental conditions are MLSS of 8000mg/L, COD of 250mg/L, TN of 12.5mg/L, and TP of 2.5mg/L. Several batch tests were carried out and samples were collected with the interval of 1 hour. Samples were measured by LSC(Liquid scintillation counter) after filtering by MF and UF. In batch test with granular sludge the permeate concentrations(removal efficiencies) of NDMA by MF and UF were 71.7ng/L(32.0%) and 62.0ng/L(43.7%) at aerobic state, and 52.0ng/L(49.2%) and 47.6ng/L(58.9%) at anaerobic state, respectively. Hence, UF membrane showed about 10% more removal efficiency than MF and removal efficiency at anaerobic condition was 15% more than that at aerobic condition.

  • PDF

A study on the fault detection efficiency of software (소프트웨어의 결함 검출 효과에 관한 연구)

  • Kim, Sun-Il;Che, Gyu-Shik;Jo, In-June
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.737-743
    • /
    • 2008
  • I compare my parameter estimation methodoloay with existing method, considering both of testing effort and fault detecting rate simultaneously in software reliability modeling. Generally speaking, fault detection/removal mechanism depends on how apply previous fault detection/removal and testing effort of S/W. The fault removal efficiency makes large influence to the reliability growth, testing and removal cost in developing stage S/W. This is very useful measure during all the developing stages and much helpful for the developer to estimate debugging efficiency, and furthermore, to anticipate additional working amount.

On-site Investigation and Verification of Effect of the Sea Urchin Removal Devices (전기장 자극을 활용한 성게제거장치의 해상성능 평가)

  • Kim, Dae-Jin;Lee, Jungkwan;Kim, Seonghun;Oh, Wooseok;Oh, Taegeon;Lee, Donggil;Lee, Kyounghoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.6
    • /
    • pp.954-959
    • /
    • 2020
  • This study aimed to verify the effectiveness of rescue apparatus, that can capture crabs using external stimuli such as food and electricity, without relying on divers. In this study, a microcomputer-based controller and an IC-device-based controller were developed, and spot inspection was conducted using 20 modules and 30 sea urchin removal modules. Accordingly, 58, 18, 17, and 74 sea urchins were introduced in the first, second, third and fourth experiments, respectively. The result of evaluating the lure of each removal mechanism, based on the catch per unit effort, with an electrical stimulus was 1.1 (32/10), with a feeding stimulus was 3.4 (100/29), and with electrical and feeding stimuli was 3.5 (35/10).

Efficiency Characteristics by Mixed Absorbents for the Removal of Odor Compounds in the Wet Scrubber (습식세정탑 내 악취가스 제거를 위한 복합흡수제의 효율 특성)

  • Park, Young G.;Kim, Jeong-in
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.48-55
    • /
    • 2011
  • It was found that the absorbent mixed with 2-aminoethanol and others has been applied to remove them via chemical neutralization. The absorbent of natural second metabolites was achieved by a removal efficiency of 20~30% by itself depending on treatment conditions, but the complex absorbent mixed with 0.2% amine chemical provides the removal efficiency of over 98%. Optimal removal efficiencies have been examined against two major parameters of the temperature and pH to remove ammonia and hydrogen sulfide gases. The chemical analysis was also performed to analyze the composition of an essential oil by GC-MS. The monoterpenes in an essential oil reacted with odorous compounds by neutralization and their reaction mechanism was partially elucidated.

Evaluation of Ammonia Removal Mechanisms and Efficiencies Through Batch Experiments (배치 실험을 이용한 암모니아 제거 기작 및 효율 평가)

  • Jang, Jieun;Kang, Jiyoung;Kim, Hye Won;Shin, Kyu Jin;Jeen, Sung-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.6
    • /
    • pp.37-46
    • /
    • 2022
  • As the amount of livestock wastewater increases, ammonia contamination in surface water and groundwater is also increasing, and its treatment is urgently needed. In this study, indigenous soil bacteria was utilized for ammonia removal in artificial wastewater and associated removal mechanisms and efficiencies were evaluated. Two batch reactors were configurated to contain natural soil and artificial wastewater at 1:10 mass ratio, and incubated for 84 and 168 hours, respectively. The results showed that ammonia was completely removed within 48 and 72 hours in the first and second reactors, respectively. There were no significant changes in ammonia concentrations in the control groups without soil. Nitrate was formed in the reactors, indicating that the main removal mechanism of ammonia was nitrification by nitrifying bacteria. Nitrate was further converted to nitrogen gas by denitrification in the anaerobic environment, which was caused by consumption of oxygen during the nitrification process.

Removal Characteristics of Heavy Metals in Acid Mine Drainage (AMD) Using Porous Starfish Ceramics (II) - Treatment of AMD in a Column Reactor System (불가사리 소재 다공성 세라믹을 이용한 산성광산배수 내 중금속의 제거특성(II) - 컬럼연속 실험을 통한 산성광산배수의 처리특성)

  • Lee, Yonghwan;Yim, Soobin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.25-34
    • /
    • 2014
  • The objective of this study was to investigate the removal characteristics and the elimination mechanism of heavy metals in Acid Mine Drainage (AMD) using spherical-type porous Zeolite-StarFish ceramics (porous ZSF ceramics) packed in a continuous column reactor system. The average removal efficiencies of heavy metals in AMD were Al 98.7, As 98.7, Cd 96.0, Cu 89.1, Fe 99.5, Mn 94.4, Pb 96.3 and Zn 80.8 % during 110 days of operation time. The average removal capacity of porous ZSF ceramics for heavy metals were measured to be Al 21.76, As 1.52, Cd 1.27, Cu 3.41, Fe 44.83, Mn 3.48, Pb 2.36 and Zn $3.76mg/kg{\cdot}day$. The analysis results of mechanism using SEM, EDS and XRD exhibited that the porous ZSF ceramics could act as a multi-functional ceramics for the removal of heavy metals in AMD through the reactions of precipitation, adsorption and ion-exchange. The experimental results of column reactor system displayed that the porous ZSF ceramics would be a consistently efficient agent for the removal of heavy metals in AMD for a long term.

A Study on the Nitrate Removal in Water by Chelating Bond of Calcium Alginate (Calcium Alginate의 킬레이트 결합을 이용한 수중의 질산성 질소 제거에 관한 연구)

  • Kim, Tae Kyeong;Song, Ju Young;Kim, Jong Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.795-801
    • /
    • 2016
  • This study is on the denitrification process using the sodium alginate and $CaCl_2$ as a flocculant. Removal techniques of nitrate nitrogen from waste water are reverse osmosis, ion exchange, electro dialysis and biological method etc. We tried to remove nitrate nitrogen with flocculation and sedimentation method in the present study. Calcium alginate is expected to form a chelate bond with nitrate nitrogen in the solution. So the effects of flocculantt component, flocculation reaction time, molar ratio of the flocculant, flocculant injection rate are studied to determine the best removal rate of nitrate nitrogen. In addition, we tried to determine the nitrate nitrogen removal mechanism by analyzing the structure and component ratio of the configuration after the agglutination precipitate by FE-SEM and EDS. As a result, the nitrate nitrogen removal mechanism is turned out to form calcium-nitro-alginate, and the best mole ratio of flocculating agent is 1 : 1, the injection rate of the flocculant was up to 2%, the removal rate of the nitrate nitrogen to be 56.7% in the synthetic wastewater.