• Title/Summary/Keyword: Removal Ratio

Search Result 1,614, Processing Time 0.026 seconds

Effects of Advanced Oxidation of Penicillin on Biotoxicity, Biodegradability and Subsequent Biological Treatment (고도산화공정 처리가 페니실린의 생독성, 생분해도 및 생물학적 분해에 미치는 영향)

  • Luu, Huyen Trang;Minh, Dang Nhat;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.690-695
    • /
    • 2018
  • Advanced oxidation processes (AOPs) composed of O3 and UV were applied to degrade penicillin (PEN). The degradation efficiency was evaluated in terms of changes in the absorbance (ABS) and total organic carbon (TOC). The combination of $O_3/H_2O_2/UV$ and $O_3/UV$ showed the best performance for the reduction of ABS (100% for 9 min) and TOC (70% for 60 min) values, although the mineralization was uncompleted under the experimental condition in this study. The change in biotoxicy was monitored with Escherichia coli susceptibility and Vibrio fischeri biofluorescence. The E. coli susceptibility was eliminated completely for 9 min by $O_3/UV$, and the toxicity to V. fischeri biofluorescence was 57% reduced by $O_3/H_2O_2/UV$. For the ultimate treatment of PEN, it is suggested that an AOP using $O_3/UV$ is followed by biological treatment, utilizing the enhanced biodegradability by the AOP. During 30 min of $O_3/UV$ treatment, the $BOD_5/COD$ ratio as an indication of biodegradability showed about 4-fold increment, compared to that of using a non-treated sample. TOC removal rate for AOP-pretreated PEN wastewater increased 55% compared to that of using the non-pretreated one through an aerobic biological treatment by Pseudomonas putida for artificial wastewater containing 20 mg/L of PEN. In conclusion, $O_3/UV$ process is recommended as a pretreatment step prior to an aerobic biological process to improve the ultimate degradation of penicillin.

Protective Effects of Membrane-Free Stem Cell Extract from H2O2-Induced Inflammation Responses in Human Periodontal Ligament Fibroblasts (무막줄기세포추출물의 H2O2에 의해 유도된 치주 세포의 염증 반응 보호 효과)

  • He, Mei Tong;Kim, Ji Hyun;Kim, Young Sil;Park, Hye Sook;Cho, Eun Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.95-103
    • /
    • 2019
  • Periodontal inflammation, a major kind of periodontal diseases, is characterized to bleed, pain, and teeth loss, and it is resulted from oxidative stress. Membrane-free stem cell extract could avoid the immunogencity rejection by removal of cell membrane. In the present study, we investigated the protective effect of membrane-free stem cell extract from oxidative stress-induced periodontal inflammation in human periodontal ligament fibroblasts (HPLF). In the cell viability measurement, membrane-free stem cell extract showed significant increase of cell viability, compared with the $H_2O_2$-treated control group. To further investigation of molecular mechanisms, we measured inflammation and apoptosis related protein expressions. Membrane-free stem cell extract attenuated inflammation-related protein expressions such as nuclear factor kappa light chain enhancer of activated B cells, inducible nitric oxide synthase, and interleukin-6. In addition, the treatment of membrane-free stem cell extract decreased apoptotic protein expressions such as cleaved caspase-9, -3, poly (ADP-ribose) polymerase, and B-cell lymphoma 2 (Bcl-2)-associated X protein/Bcl-2 ratio in the $H_2O_2$-treated HPLF cells. In conclusion, membrane-free stem cell extract exhibited anti-oxidative stress effects by regulation of inflammation and apoptosis in HPLF, suggesting that it could be used as the treatment agents for periodontal inflammatory disease.

A Changes of Traditional Landscape Architecture Materials in Yangdong Village, Gyeongju - Building Roof Materials in the Village Since the 1970s - (정비 사업을 통해 본 경주 양동마을 전통조경 재료의 변화양상 - 1970년대 이후 마을 내 건축물 지붕 소재를 중심으로 -)

  • Kim, Dong-Hyun;Lee, Jong-Sung;Choi, Jong-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.50-57
    • /
    • 2018
  • Based on research projects and maintenance plans that have been carried out to observe changes in the appearance of buildings in Yangdong Village, Gyeongju, this study analyzed the process of changes in roof materials since the 1970s and drew the following conclusions. First, as the proportion of houses used in the yanggi and yanggi in the 1970s appears similar to that of Wagawa, it is believed that the village landscape has changed due to the use of modern materials by modernization and urbanization. Second, the initial stage of readjustment was designated as a folk data protection zone in 1977 and important folk data designation in 1984. However, due to the lack of a budget for repair and indiscriminate repair, the effectiveness of the project did not seem to have been high. As a result, the trend of decreasing the initial price of the previous period and increasing the use of materials such as yanggi and slate were continuing. Third, in the 1990s, the Cultural Heritage Administration pushed for restoration to the traditional method through extensive renovation projects, making efforts to restore traditional materials, such as reduction of the yanggi and roof, removal of the Hamseok roof, and an increase in the price of grass. Fourth, in the 2000s and thereafter, various readjustment projects were completed in the previous period, with the ratio of Wagwa and Choga greatly increased and the number of houses on the roof of slate reduced by about half, and the level of maintenance of the village's retirement homes was readjusted after the World Heritage List in 2010.

A Study on Microorganism Dominant Species in Bench-scale Shipboard STP Using Combined SBR and MBR Process (SBR 및 MBR 복합공정을 적용한 Bench-scale Shipboard STP에서의 미생물 우점종에 관한 연구)

  • Choi, Young-Ik;Shin, Dae-Yeol;mansoor, Sana;Kwon, Min-Ji;Jung, Jin-Hee;Jung, Byung-Gil
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.550-555
    • /
    • 2018
  • International Maritime Organization (IMO) is one of the most effective organizations in evolving international law for the protection and conservation of the marine environment. The IMO, MARPOL(Marine Pollution) 73/78 contains six Annexes that provide an overarching framework for the objectives of the international marine pollution. Annex IV was regulated by 64 th resolution in 2012 to control sea pollution from sewage. In 2014 large-scale wastewater treatment and nutrient removal device was developed with a grant from the Ministry of Oceans and Fisheries. A combined new process of Sequence Batch Reactor (SBR) and Membrane Bioreactor(MBR) was developed to overcome the pollution caused by shipboard sewage. In the present study, shipboard sewage wastewater was treated by mixing and aeration cycle in the newly developed SBR process. Furthermore, during analysis by NGS technique(Macrogen Co., Ltd.), dominant species of bacteria were found in the aeration tank of the Bench-scale wastewater treatment facility. Bacteroidetes and Gammaproteobacteria accounted for 27.1 % of the aerobicbacteria and 16.8 % of the anaerobicbacteria, respectively. Microorganisms play a vital role in shipboard wastewater treatment. A further detailed study is required to understand the precise role of the microorganisms in the wastewater treatment.

Effect of Characteristic Change in Natural Graphite according to Complex Purification Process on Anode Performance for Lithium Ion Battery (복합 정제 공정에 따른 천연 흑연의 물리화학적 특성 변화가 리튬 이온 전지의 음극재 성능에 미치는 영향)

  • Ahn, Won Jun;Hwang, Jin Ung;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.290-298
    • /
    • 2021
  • A purification process was performed for the application of natural graphite as an anode material. The influence of the structural change and impurity content of graphite according to the process on the anode electrochemical characteristics was investigated. Natural graphite was chemically/physically purified by acid-treatment which used different amounts of solution of ammonium fluoride/sulfuric acid in the same ratio and thermal treatment used different temperatures (800~2500 ℃). Acid-treatment had limitation to remove impurities, and identified that all impurity contents was removed except some traces of atom such as Si by after progressed thermal-treatment until 2500 ℃. The anode materials characteristic of graphite treated by purification process was improved, and changes in the structure and impurity contents affected dominantly the capacity, rate property and initial Coulombic efficiency. Consequently, the complex purification process improved the graphite structure and also the performance of lithium ion battery by controlling the excessive formation of solid electrolyte interphase and expanding Li+ insertion space originated from the effective removal of impurities.

Influence of Bacterial Attachment on Arsenic Bioleaching from Mine Tailings: Dependency on the Ratio of Bacteria-Solid Substrate (광물찌꺼기 내 비소의 미생물 침출 시 박테리아 흡착 영향: 박테리아와 고체 기질 비율에 관한 연구)

  • Park, Jeonghyun;Silva, Rene A.;Choi, Sowon;Ilyas, Sadia;Kim, Hyunjung
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.30-40
    • /
    • 2021
  • The present study investigates the bioleaching efficiencies of arsenic via contact and non-contact mechanisms. The attachment of Acidithiobacillus ferrooxidans was restricted by a partition system comprising a semi-permeable membrane with a molecular weight cutoff of 12-14 kDa. The results were compared for two arsenic concentrations in the system (1.0% and 0.5% w/v) to maintain a homogeneous system. The overall bacterial performance was monitored by comparing total arsenic and iron concentrations, Fe ion speciation, pH, and solution redox potentials in flask bioleaching experiments over a period of 10 d. Our results indicated that bacterial attachment could increase arsenic extraction efficiency from 20.0% to 44.9% at 1.0 % solid concentrations. These findings suggest that the bacterial contact mechanism greatly influences arsenic bioleaching from mine tailings. Therefore, systems involving two-step or non-contact bioleaching are less effective than those involving one-step or contact bioleaching for the efficient extraction of arsenic from mine tailings.

Integrated Digestion of Thermal Solubilized Sewage Sludge to Improve Anaerobic Digestion Efficiency of Organic Waste (유기성 폐기물의 혐기성 소화효율 향상을 위한 열가용화 하수슬러지의 통합소화)

  • Oh, Kyung Su;Hwang, Jung Ki;Song, Young Ju;Kim, Min Ji;Park, Jun Gyu;Pak, Dae Won
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.95-102
    • /
    • 2022
  • Studies for improving the efficiency of the traditional anaerobic digestion process are being actively conducted. To improve anaerobic digestion efficiency, this study tried to derive the optimal pretreatment conditions and mixing conditions by integrating the heat solubilization pretreatment of sewage sludge, livestock manure, and food waste. The soluble chemical oxygen demand (SCOD) increase rate of sewage sludge before and after heat solubilization pretreatment showed an increased rate of 224.7% compared to the control group at 170℃ and 25 min and showed the most stable increase rate. As a result of the biomethane potential test of sewage sludge before and after heat solubilization pretreatment, the total chemical oxygen demand (TCOD) and SCOD removal rates increased as the heat solubilization temperature increased, but did not increase further at temperatures above 170℃. In the case of methane generation, there was no significant change in the cumulative methane generation from 0.134 to 0.203 Sm3-CH4/kg-COD at 170℃ for 15 min. As a result of the integrated digestion of organic waste, the experimental condition in which 25% of the sewage sludge, 50% of the food waste, and 25% of the livestock manure were mixed showed the highest methane production of 0.3015 m3-CH4/kg-COD, confirming that it was the optimal mixing ratio condition. In addition, under experimental conditions mixed with all three substrates, M4 conditions mixed with 25% sewage sludge, 50% food waste, and 25% livestock manure showed the highest methane generation at 0.2692 Sm3-CH4/kg-COD.

Changes of Rice Yield and Soil Physicochemical Properties in Long-term Dry Seeded Rice-Barley Double Cropping (건답직파 벼-보리 장기간 이모작 재배시 벼 수량 및 토양 물리화학성 변화)

  • Shin, Sang-Ouk;Park, Sung-Tae;Hwang, Chung-Dong;Hwang, Dong-Yong;Kim, Sang-Yeol;Moon, Huhn-Pal
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.6
    • /
    • pp.459-463
    • /
    • 2001
  • Changes of rice yield and soil physicochemical properties of the dry-seeded rice-barley double cropping system were investigated for 10 years from 1990 to 1999. Generally, seedling stand was more unstable in the rice-barley cropping system regardless of barley straw addition or removal than in the rice single cultivation as indicated by higher standard deviation of seedling stand across year. Rice yield in rice-barley double cropping cultivation was increased due to barley straw application starting from the second year, recording 2 to 19% increase (average of 9% for 10 years) due to higher spikelet number. Protein content and Mg/K equivalent ratio were similiar among the barley straw applied field, rice single crop and barley straw removed plots. Also, amylose content was not significantly different among cropping patterns. Physicochemical properties of soil was improved by applying the barley straw; soil porosity was higher and content of organic matter and cation exchange capacity of Ca increased but those of Mg and K did not differ.

  • PDF

Applications of a Hybrid System Coupled with Ultraviolet and Biofiltration for the Treatment of VOCs (휘발성유기화합물 처리를 위한 고도산화법과 고분자 담체 바이오필터 결합시스템의 적용)

  • Shin, Shoung Kyu;Song, Ji Hyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.441-447
    • /
    • 2008
  • Volatile organic compounds (VOCs) emitted from various industrial sources commonly consist of biodegradable chemicals and recalcitrant compounds. Therefore, it is not effective to employ a single method to treat such mixtures. In this study, a novel hybrid system coupled with a ultraviolet (UV) photolysis reactor and a biofilter in a series was developed and evaluated using toluene and TCE as model VOCs. When only TCE was applied to the UV reactor, greater than 99% of TCE was degraded and the concentration of soluble byproducts from photo-oxidation reaction increased significantly. However, the toluene and TCE mixture was not effectively degraded by the UV photo-oxidation standalone process. The hybrid system showed high toluene removal efficiencies, and TCE degradation at a low toluene/TCE ratio was improved by UV pretreatment. These findings indicated that the UV photo-oxidation were effective for TCE degradation when the concentration of toluene in the mixture was relatively low. A restively high toluene content in the mixture resulted in an inhibition of TCE degradation. Thus, chemical interactions in both photo-oxidation and biodegradation need to be carefully considered to enhance overall performance of the hybrid system.

Monitoring of Residual Pesticides in Grape Seed Oil being Sold in Gyeonggi Province (경기도 내 판매되고 있는 포도씨유의 잔류농약 모니터링)

  • Mi-Hui Son;Jae-Kwan Kim;You-Jin Lee;Ji-Eun Kim;Eun-Jin Baek;Byeong-Tae Kim;Myoung-Ki Park;Bo-yeon Kwon
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.128-133
    • /
    • 2024
  • Using the freezing removal method, we investigated residual pesticides in 50 grape seed oils distributed in Gyeonggi Province, South Korea. The fat was mixed with acetonitrile and then frozen at ≤-20℃ for 24 h. Fats and oils were removed by separating those in solid state and the extract acetonitrile in liquid state. Ten residual pesticides were detected 161 times in 49 of 50 cases. The detected pesticides were boscalid, cyclufenamide, deltamethrin, difenoconazole, fluxapyroxad, fenpyrazamine, kresoxim-methyl, piperonyl butoxide, tebuconazole, and trifluoxysorbin. Boscalid, a fungicide, was most frequently detected (44 times), followed by fluxapiroxad (35 times). The detection range was 0.01-1.10 mg/kg, which was within the legal limit of residual pesticide for grapes. The recovery rate of the detected pesticides was 72.6-129.8% and the ratio of estimated daily intake/acceptable daily intake was calculated to determine the risk of the detected pesticides, which was <0.0028%. This indicated that the risk caused by pesticide residues in grape seed oil is at a safe level.