• Title/Summary/Keyword: Removal Amount

Search Result 1,457, Processing Time 0.022 seconds

Semi-pilot Study of Electrokinetic Process for Phenanthrene Removal from Kaolinite

  • Lee, You-Jin;Park, Ji-Yeon;Kim, Sang-Joon;Lee, Young-Cheol;Yang, Ji-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.215-218
    • /
    • 2004
  • The electrokinetically enhanced soil flushing had a great potential to improve the removal efficiency of polycyclic aromatic hydrocarbons (PAHs) from low permeable soils. A semi-pilot study of surfactant-enhanced electrokinetic process was investigated for the removal of phenanthrene from kaolinite. A nonionic surfactant, Tergitol 15-S-12 at 10 g/L was introduced as a flushing agent and 0.001M of sodium chloride was used as an electrolyte. When the constant voltage of 100 V was applied to the system for 25 days, only 0.66 kWh of electric power was consumed and the amount of electroosmotic flow was 6.9 L. The removal efficiency of phenanthrene was about 40 % and it can be improved by increasing the ion concentration of the flushing solution or the applied voltage.

  • PDF

Removal of Heavy Metals from Acid Mine Drainage Using Sulfate Reducing Bacteria (황산염환원균을 이용한 폐광폐수의 중금속 제거)

  • Paik, Byeong Cheon;Kim, Kwang Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.47-54
    • /
    • 1999
  • SRB(Sulfate Reducing Bacteria) converts sulfate into sulfide using an organic carbon source as the electron donor. The sulfide formed precipitates the various metals present in the AMD (Acid Mine Drainage). This study is the fundamental research on heavy metal removal from AMD using SRB. Two completely mixed anaerobic reactors were operated for cultivation of SRB at the temperature of $30^{\circ}C$ and anaerobic batch reactors were used to evaluate the effects of carbon source, COD/sulfate($SO_4^=$) ratio and alkalinity on sulfate reduction rate and heavy metal removal efficiency. AMD used in this study was characterized by low pH 3.0 and 1000mg/l of sulfate and dissolved high concentration of heavy metals such as iron, cadmium, copper, zinc and lead. It was found that glucose was an organic carbon source better than acetate as the electron donor of SRB for sulfate reduction in AMD. Amount of sulfate reduction maximized at the COD(glucose)/sulfate ratio of 0.5 in the influent and then removal efficiencies of heavy metals were 97.5% of Cu, 100% of Pb, 100% of Cr, 49% of Mn, 98% of Zn, 100% Cd and 92.4% of Fe. Although sulfate reduction results in an increase in the alkalinity of the reactor, alkalinity of 1000mg/1 (as $CaCo_3$) should be should be added continuously to the anaerobic reactor in order to remove heavy metals from AMD.

  • PDF

Removal of Non-biodegradable Organic Contaminants in Wastewater from crude oil reserve base Using Pulse UV System (Pulse UV 장치를 이용한 원유비축시설 발생폐수의 난분해성 유기오염물질 제거)

  • Sohn, Jin-Sik;Park, Soon-Ho;Jung, Eui-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.861-867
    • /
    • 2011
  • Wastewater from crude oil reserve base usually contains large amount of non-biodegradable contaminants. The conventional wastewater treatment progress can hardly meet the regulation of wastewater effluent quality. This study investigated the removal of non-biodegradable organic contaminants in wastewater from crude oil reserve base using a pulse UV treatment. The modified process incorporating pulse UV process was set up to treat the wastewater from crude oil reserve base. The treatment process is composed with coagulation and flocculation, micro-bubble flotation, sand filter, pulse UV system, and GAC filter. The results show CODMn was effectively removed by the process with pulse UV system and it can meet the wastewater effluent regulation. The single effect of pulse UV process in CODMn removal was not significant(9~15% based on sand filtered effluent), however with the subsequent activated carbon filter the removal ratio CODMn was increased up to 28% compared to the process without pulse UV syetem.

Effect of Organic Loading Rate on the Performance of Anaerobic Hybrid Reactor (유기물 부하가 Anaerobic Hybrid Reactor 운전효율에 미치는 영향)

  • Shin, Chang-Ha;Oh, Dae-Yang;Kim, Tae-Hoon;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.4
    • /
    • pp.497-502
    • /
    • 2012
  • Anaerobic Digestion Process is evaluated as efficient wastewater treatment process with the removal of high concentrations of organic waste and production of biogas. This study was performed using hybrid anaerobic hybrid reactor (AHR) which consists of anaerobic sludge blanket (UASB) and biofilm-coated filter media was applied for Palm Oil Mill Effluent (POME) for 80 days to know optimum removal efficiency and production of biogas by comparing each part which divided changing Organic Loading Rate (OLR). As a result of this study, the removal efficiency was 90.4 % when the organic loading rate of influent was 15 kg COD/$m^3$/day. Since organic loading rate was up to 20 kg COD/$m^3$/day, the removal rate declined 80.7%. Over loading of influent caused sludge expansion and overproduction of microorganism. Amount of biogas was collected 82.3 L/day and pH was remained 6.9 constantly with balance of alkalinity.

The Utilization of Waste Seashells for $H_{2}S$ Removal

  • Kim, Young-Sik;Suh, Jeong-Min;Jang, Sung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.6
    • /
    • pp.483-488
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_{2}$S was studied in a thermogravimetric analyzer at temperature between 600 and $800^{circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the $H_{2}$S removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy (SEM). Measurements of the reaction of $H_{2}$S with waste seashells show that particles smaller than 0.631 mm can achieve high conversion to CaS. According to TGA and fixed bed reactor results, temperature had influenced on $H_{2}$S removal efficiency. As desulfurization temperature increased, desulfurization efficiency increased. Also, maximum desulfurization efficiency was observed at $800^{circ}C$. Desulfurization was related to calcinations temperature.

A Study on the Removal of Silver in Copper Electrolyte (황산동전해액(黃酸銅電解液) 중 은(銀(Ag)) 제거(除去)를 위한 연구(硏究))

  • So, Sun-Seob;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.60-65
    • /
    • 2008
  • A study on the removal of silver(Ag) in copper electrolyte was carried out to produce high purity copper by using various method such as ion exchange resin, activated carbon adsorption, copper cementation with powder and wire, CuS precipitation. Parameters, such as reaction time, reaction temperature, addition amount etc. were investigated to determine the effective condition of silver removal. CuS precipitation and ion exchange using Lewatit TP214 was found to be effective. Especially, silver content in copper electrolyte was reduced from 10 ppm to less than 0.1 ppm by ion exchange with Lewatit TP214.

Removal Efficiency of Arsenic by Adsorbents having Different Type of Metal Oxides

  • Min, Sang-Yoon;Kim, Byeong-Kwon;Park, Sun-Ju;Chang, Yoon-Young;Yang, Jae-Kyu
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.134-139
    • /
    • 2009
  • In this study, oxidation of As (III) as well as removal of total arsenic by adsorbents coated with single oxides or multi-oxides (Fe (III), Mn (IV), Al (III)) was investigated. In addition, multi-functional properties of adsorbents coated with multi-oxides were evaluated. Finally, application of activated carbon impregnated with Fe or Mn-oxides on the treatment of As (III) or As (V) was studied. As (V) adsorption results with adsorbents containing Fe and Al shows that adsorbents containing Fe show a greater removal of As (V) at pH 4 than at pH 7. In contrast adsorbents containing Al shows a favorable removal of As (V) at pH 7 than at pH 4. In case of iron sand, it has a negligible adsorption capacity for As (V) although it contains 217.9 g-Fe/kg-adsorbent, Oxidation result shows that manganese coated sand (MCS) has the greatest As (III) oxidation capacity among all metal oxides at pH 4. Oxidation efficiency of As (III) by IMCS (iron and manganese coated sand) was less than that by MCS. However the total removed amount of arsenic by IMCS was greater than that by MCS.

Effects of pH on the growth, total nitrogen, total phosphorus and organic compound removal in heterotrophic culture of Chlorella sorokiniana applied wastewater treatment (pH와 탄소원이 Chlorella sorokiniana의 heterotrophic 배양 및 하폐수고도처리능에 미치는 영향)

  • Park, Jeong-Eun;Cho, Yong-Beom;Zhang, Shan;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.703-709
    • /
    • 2013
  • Among many microalgae cultivation types, heterotrophic culture with low cost carbon sources and energy saving culture method is crucial. A result of estimating the effects of pH on wastewater treatment using heterotrophic growing microalgae Chlorella sorokiniana shows that there was no difference in microalgae growth amount and nitrogen, phosphorus removal rate by wide range of pH(5 ~ 9). From pH 5 to 9, total nitrogen, phosphorous and glucose removal rates were 10.5 mg-N/L/d, 2 mg-P/L/d, 800 ~ 1000 mg/L respectively. This study reveals that C. sorokiniana cannot metabolite glycerol heterotrophically, however, glucose and acetate were proper carbon sources for growth and T-N, T-P and TOC removal. This research highlights the potential of heterotrophic microalgal growth with wastewater treatment plant with wide range of pH and carbon sources.

Evaluation of the Nitrate Anion in Recon Extract by Adsorbents

  • Han, Young-Rim;Sung, Yang-Joo;Park, Jin-Won;Kim, Yang-Ok;Rhee, Moan-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.2
    • /
    • pp.104-109
    • /
    • 2007
  • The amount of nitrate in the tobacco leaf has been shown to be correlated with the levels of alkaloids and nitrosamines. Also the nitrate content of the tobacco correlated closely with the smoke delivery of nitric oxide and tobacco-specific nitrosamines (TSNAs). These are related with the effect of the reconstituted tobacco leaf(Recon) using the tobacco stems. Adsorption process is gaining interest as one of the effective processes of advanced liquid treatment for liquid containing unnecessary materials. This study is focused on the evaluation of four anion exchangers, a cation exchanger and an activated carbon, as adsorbents for reduction of nitrate anion from Recon extract. In order to analyze the nitrate anion, the IC method used in this work was carried out with a Dionex ICS-2000 system. The effects of dosages of adsorbents and concentration of extract on the removal of nitrate anion were examined. Experimental results showed that for nitrate-anion exchanger, nitrate-cation exchanger and nitrate-activated carbon adsorption system, approximately 70 %, 10 %, and 4 % removal efficiencies were achieved at the Brix 10 and the 20 % addition. Although the activated carbon was little efficient for removal of nitrate ion, the removal of nicotine was very efficient at given conditions.

Fluoride Removal from Aqueous Solutions using Industrial Waste Red Mud (산업폐기물인 적니를 이용한 불소 제거)

  • Um, Byung-Hwan;Jo, Sung-Wook;Kang, Ku;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.35-40
    • /
    • 2013
  • The present study was conducted to investigate the adsorption potential of red mud for fluoride removal. Different operation parameters such as the effect of contact time, initial concentration, pH, competing anions, seawater, adsorbent dose amount, and adsorbent mixture were studied. Nearly 3 hr was required to reach sorption equilibrium. Equilibrium sorption data were described well by Langmuir model and the maximum adsorption capacity of red mud was 5.28 mg/g. The fluoride adsorption at pH 3 was higher than in the pH range 5-9. The presence of anions such as sulfate, nitrate, phosphate, and bicarbonate had no significant effect on fluoride adsorption onto red mud. The fluoride removal by red mud was greater in seawater than deionized water, resulting from the presence of calcium and magnesium ion in seawater. The use of red mud alone was more effective for the removal of fluoride than mixing red mud with other industrial waste such as oyster shells, lime stone, and steel slag. This study showed that red mud has a potential application in the remediation of fluoride contaminated soil and groundwater.