• Title/Summary/Keyword: Remote training

Search Result 327, Processing Time 0.028 seconds

An Implementation of Neuro-Fuzzy Based Land Convert Pattern Classification System for Remote Sensing Image (뉴로-퍼지 알고리즘을 이용한 원격탐사 화상의 지표면 패턴 분류시스템 구현)

  • 이상구
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.472-479
    • /
    • 1999
  • In this paper, we propose a land cover pattern classifier for remote sensing image by using neuro-fuzzy algorithm. The proposed pattem classifier has a 3-layer feed-forward architecture that is derived from generic fuzzy perceptrons, and the weights are con~posed of h u y sets. We also implement a neuro-fuzzy pattern classification system in the Visual C++ environment. To measure the performance of this, we compare it with the conventional neural networks with back-propagation learning and the Maximum-likelihood algorithms. We classified the remote sensing image into the eight classes covered the majority of land cover feature, selected the same training sites. Experimental results show that the proposed classifier performs well especially in the mixed composition area having many classes rather than the conventional systems.

  • PDF

Evidential Fusion of Multsensor Multichannel Imagery

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.75-85
    • /
    • 2006
  • This paper has dealt with a data fusion for the problem of land-cover classification using multisensor imagery. Dempster-Shafer evidence theory has been employed to combine the information extracted from the multiple data of same site. The Dempster-Shafer's approach has two important advantages for remote sensing application: one is that it enables to consider a compound class which consists of several land-cover types and the other is that the incompleteness of each sensor data due to cloud-cover can be modeled for the fusion process. The image classification based on the Dempster-Shafer theory usually assumes that each sensor is represented by a single channel. The evidential approach to image classification, which utilizes a mass function obtained under the assumption of class-independent beta distribution, has been discussed for the multiple sets of mutichannel data acquired from different sensors. The proposed method has applied to the KOMPSAT-1 EOC panchromatic imagery and LANDSAT ETM+ data, which were acquired over Yongin/Nuengpyung area of Korean peninsula. The experiment has shown that it is greatly effective on the applications in which it is hard to find homogeneous regions represented by a single land-cover type in training process.

Crop Classification for Inaccessible Areas using Semi-Supervised Learning and Spatial Similarity - A Case Study in the Daehongdan Region, North Korea - (준감독 학습과 공간 유사성을 이용한 비접근 지역의 작물 분류 - 북한 대홍단 지역 사례 연구 -)

  • Kwak, Geun-Ho;Park, No-Wook;Lee, Kyung-Do;Choi, Ki-Young
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.689-698
    • /
    • 2017
  • In this paper, a new classification method based on the combination of semi-supervised learning with spatial similarity of adjacent pixels is presented for crop classification in inaccessible areas. Iterative classification based on semi-supervised learning is applied to extract reliable training data from both the initial classification result with a small number of training data, and classification results of adjacent pixels are also considered to extract new training pixels with less uncertainty. To evaluate the applicability of the proposed method, a case study of the classification of field crops was carried out using multi-temporal Landsat-8 OLI acquired in the Daehongdan region, North Korea. From a case study, the misclassification of crops and forests, and isolated pixels in the initial classification result were greatly reduced by applying the proposed semi-supervised learning method. In addition, the combination of classification results of adjacent pixels for the extraction of new training data led to the great reduction of both misclassification results and isolated pixels, compared to the initial classification and traditional semi-supervised learning results. Therefore, it is expected that the proposed method would be effectively applied to classify areas in which it is difficult to collect sufficient training data.

Updating Land Cover Maps using Object Segmentation and Past Land Cover Information (객체분할과 과거 토지피복 정보를 이용한 토지피복도 갱신)

  • Kwak, Geun-Ho;Park, Soyeon;Yoo, Hee Young;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1089-1100
    • /
    • 2017
  • This paper presented a method using past land cover maps in image segmentation and training set collection for updating land cover maps. In this method, the object boundaries in past land cover maps were used for segmenting image clearly. Also, the classes of past land cover maps were used to extract additional informative training set from the initial classification result using a small number of initial training set. To evaluate the applicability of proposed method, a case study for updating land cover maps was carried out using middle-level land cover maps and WorldView-2 image in the Taean-gun, South Korea. As a result of the case study, the confusions between urban and barren, paddy/dry field and grassland in the initial classification result were reduced by adding training set. In addition, the object segmentation using boundaries of past land cover map cleared land cover boundaries and improved classification accuracy. Based on the result of case study, the proposed method using past land cover maps is expected to be useful for updating land cover maps.

Prospects For The Development Of Distance Educational Learning Technologies During The Training Of Students Of Higher Education

  • Rohach, Oksana;Pryhalinska, Tetiana;Kvasnytsya, Iryna;Pohorielov, Mykhailo;Rudnichenko, Mykola;Lastochkina, Olena
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.353-357
    • /
    • 2022
  • This article identifies the problems and substantiates the directions for the development of distance learning technologies in the training of personnel. An example of using digital media to create a remote access laboratory is given. The article is devoted to the definition of the main aspects of the organization of distance education. Rapid digitization, economic, political and social changes taking place in Ukraine necessitate the reform of the education system. First of all, it concerns meeting the educational needs of citizens throughout their lives, providing access to educational and professional training for all who have the necessary abilities and adequate training. The most effective solution to the above-mentioned problems is facilitated by distance learning. The article analyzes the essence and methods of distance learning organization, reveals the features of the use of electronic platforms for the organization of this form of education in different countries of the world. The positive characteristics of distance learning are identified, namely: extraterritoriality; savings on transport costs; the interest of modern youth in the use of information tools in everyday life; increase in the number of students; simplicity and accessibility of training; convenient consultation system; democratic relations between the student and the teacher; convenience for organizations in training their employees without interrupting their regular work; low level of payment for distance education compared to traditional education; individual learning pace; new teacher status. Among the negative features of online education, the author refers to the following problems: authentication of users during knowledge verification, calculation of the teacher's methodological load and copyright of educational materials; the high labor intensity of developing high-quality educational content and the high cost of distance learning equipment; the need to provide users with a personal computer and access to the Internet; the need to find and use effective motivation mechanisms for education seekers.

Prospects For the Development Of Distance Educational Learning Technologies During The Training Of Students Of Higher Education

  • Oksana Rohach;Tetiana Pryhalinska;Iryna Kvasnytsya;Mykhailo Pohorielov;Mykola Rudnichenko; Olena Lastochkina
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.179-183
    • /
    • 2024
  • This article identifies the problems and substantiates the directions for the development of distance learning technologies in the training of personnel. An example of using digital media to create a remote access laboratory is given. The article is devoted to the definition of the main aspects of the organization of distance education. Rapid digitization, economic, political and social changes taking place in Ukraine necessitate the reform of the education system. First of all, it concerns meeting the educational needs of citizens throughout their lives, providing access to educational and professional training for all who have the necessary abilities and adequate training. The most effective solution to the above-mentioned problems is facilitated by distance learning. The article analyzes the essence and methods of distance learning organization, reveals the features of the use of electronic platforms for the organization of this form of education in different countries of the world. The positive characteristics of distance learning are identified, namely: extraterritoriality; savings on transport costs; the interest of modern youth in the use of information tools in everyday life; increase in the number of students; simplicity and accessibility of training; convenient consultation system; democratic relations between the student and the teacher; convenience for organizations in training their employees without interrupting their regular work; low level of payment for distance education compared to traditional education; individual learning pace; new teacher status. Among the negative features of online education, the author refers to the following problems: authentication of users during knowledge verification, calculation of the teacher's methodological load and copyright of educational materials; the high labor intensity of developing high-quality educational content and the high cost of distance learning equipment; the need to provide users with a personal computer and access to the Internet; the need to find and use effective motivation mechanisms for education seekers.

Constructing Virtual Environment for Flight Simulators based on Digital Map (지리정보를 이용한 비행 시뮬레이터의 가상환경 구축)

  • 유병헌;한순흥
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.148-157
    • /
    • 2004
  • Interactive simulators that simulate mechanical systems are being developed for the purpose of performance evaluation of product design, replacement of physical training, and entertainment game. Use of flight simulator is increasing to reduce risk and cost of physical training, and we need virtual environment which covers large area terrain. We need a method that can reduce development cost and construction time of virtual environment that simulate the real environment. There have been attempts to link GIS or remote sensing field with virtual reality. This paper examines a method that helps to construct virtual environment, and attempts to link geographic information with virtual reality. A construction method of virtual environment based on digital map and satellite image has been studied.

Application of KITSAT-3 Images: Automated Generation of Fuzzy Rules and Membership Functions for Land-cover Classification of KITSAT-3 Images

  • Park, Won-Kyu;Choi, Soon-Dal
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.48-53
    • /
    • 1999
  • The paper presents an automated method for generating fuzzy rules and fuzzy membership functions for pattern classification from training sets of examples and an application to the land-cover classification. Initially, fuzzy subspaces are created from the partitions formed by the minimum and maximum of individual feature values of each class. The initial membership functions are determined according to the generated fuzzy partitions. The fuzzy subspaces are further iteratively partitioned if the user-specified classification performance has not been archived on the training set. Our classifier was trained and tested on patterns consisting of the DN of each band, (XS1, XS2, XS3), extracted from KITSAT-3 multispectral scene. The result represents that our classification method has higher generalization power.

  • PDF

A Multi-Objective TRIBES/OC-SVM Approach for the Extraction of Areas of Interest from Satellite Images

  • Benhabib, Wafaa;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.321-339
    • /
    • 2017
  • In this work, we are interested in the extraction of areas of interest from satellite images by introducing a MO-TRIBES/OC-SVM approach. The One-Class Support Vector Machine (OC-SVM) is based on the estimation of a support that includes training data. It identifies areas of interest without including other classes from the scene. We propose generating optimal training data using the Multi-Objective TRIBES (MO-TRIBES) to improve the performances of the OC-SVM. The MO-TRIBES is a parameter-free optimization technique that manages the search space in tribes composed of agents. It makes different behavioral and structural adaptations to minimize the false positive and false negative rates of the OC-SVM. We have applied our proposed approach for the extraction of earthquakes and urban areas. The experimental results and comparisons with different state-of-the-art classifiers confirm the efficiency and the robustness of the proposed approach.

MOTIF BASED PROTEIN FUNCTION ANALYSIS USING DATA MINING

  • Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.812-815
    • /
    • 2006
  • Proteins are essential agents for controlling, effecting and modulating cellular functions, and proteins with similar sequences have diverged from a common ancestral gene, and have similar structures and functions. Function prediction of unknown proteins remains one of the most challenging problems in bioinformatics. Recently, various computational approaches have been developed for identification of short sequences that are conserved within a family of closely related protein sequence. Protein function is often correlated with highly conserved motifs. Motif is the smallest unit of protein structure and function, and intends to make core part among protein structural and functional components. Therefore, prediction methods using data mining or machine learning have been developed. In this paper, we describe an approach for protein function prediction of motif-based models using data mining. Our work consists of three phrases. We make training and test data set and construct classifier using a training set. Also, through experiments, we evaluate our classifier with other classifiers in point of the accuracy of resulting classification.

  • PDF