• Title/Summary/Keyword: Remote maintenance

Search Result 316, Processing Time 0.028 seconds

Implementation for the Remote Control and Operational Status Monitoring Systems of the Industrial Ice Machine (산업용 냉동기의 원격 제어 및 운전 상태 모니터링을 위한 시스템 구현)

  • Jung, Jin-uk;Jin, Kyo-hong;Hwang, Min-tae
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.9
    • /
    • pp.169-178
    • /
    • 2018
  • The ice machine is the machine for making ice. As most of the companies that manufactures and sells the ice machine are small and medium-sized companies, they have been they have been experiencing the trouble for the after-sales service after selling the machine. The difficulties of the after-sales service are mostly caused by unnecessary customer service requests of the purchaser, which eventually leads to the unnecessary expenditure of the seller and the purchaser. However, financially, the poor ice machine manufacturers want to reduce this cost as much as possible. Furthermore, even if they want to sell their products overseas, they are hesitating because of the after-sales service. For this reason, the companies making the ice machine need a system which checks the status of the ice machine and takes the proper actions without the visiting service. Therefore, this paper introduces the remote control and operational status monitoring systems which can monitor the status of the ice machine in the remote area and control it as needed. Through the developed system, the company manufacturing the ice machine and the manager of the ice machine can understand the current status of the ice machine and respond against the ice machine's trouble, immediately. In addition, it can be expected to have great effects on cost reduction because the maintenance and management after selling can be efficiently performed.

A Design and Implementation of Floor Detection Application Using RC Car Simulator (RC카 시뮬레이터를 이용한 바닥 탐지 응용 설계 및 구현)

  • Lee, Yoona;Park, Young-Ho;Ihm, Sun-Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.507-516
    • /
    • 2019
  • Costs invested in road maintenance and road development are on the rise. However, due to accidents such as portholes and ground subsidence, the risks to the drivers' safety and the material damage caused by accidents are also increasing. Following this trend, we have developed a system that determines road damage, according to the magnitude of vibration generated without directly intervening the driver when driving. In this paper, we implemented the system using a remote control car (RC car) simulator due to the limitation of the environment in which the actual vehicle is not available in the process of developing the system. In addition, we attached a vibration sensor and GPS sensor to the body of the RC car simulator to measure the vibration value and location information generated by the movement of the vehicle in real-time while driving, and transmitting the corresponding data to the server. In this way, we implemented a system that allows external users to check the damage of roads and the maintenance of the repaired roads based on data more easily than the existing systems. By using this system, we can perform early prediction of road breakage and pattern prediction based on the data. Further, for the RC car simulator, commercialization will be possible by combining it with business in other fields that require flatness.

Incremental Maintenance of Horizontal Views Using a PIVOT Operation and a Differential File in Relational DBMSs (관계형 데이터베이스에서 PIVOT 연산과 차등 파일을 이용한 수평 뷰의 점진적인 관리)

  • Shin, Sung-Hyun;Kim, Jin-Ho;Moon, Yang-Sae;Kim, Sang-Wook
    • The KIPS Transactions:PartD
    • /
    • v.16D no.4
    • /
    • pp.463-474
    • /
    • 2009
  • To analyze multidimensional data conveniently and efficiently, OLAP (On-Line Analytical Processing) systems or e-business are widely using views in a horizontal form to represent measurement values over multiple dimensions. These views can be stored as materialized views derived from several sources in order to support accesses to the integrated data. The horizontal views can provide effective accesses to complex queries of OLAP or e-business. However, we have a problem of occurring maintenance of the horizontal views since data sources are distributed over remote sites. We need a method that propagates the changes of source tables to the corresponding horizontal views. In this paper, we address incremental maintenance of horizontal views that makes it possible to reflect the changes of source tables efficiently. We first propose an overall framework that processes queries over horizontal views transformed from source tables in a vertical form. Under the proposed framework, we propagate the change of vertical tables to the corresponding horizontal views. In order to execute this view maintenance process efficiently, we keep every change of vertical tables in a differential file and then modify the horizontal views with the differential file. Because the differential file is represented as a vertical form, its tuples should be converted to those in a horizontal form to apply them to the out-of-date horizontal view. With this mechanism, horizontal views can be efficiently refreshed with the changes in a differential file without accessing source tables. Experimental results show that the proposed method improves average performance by 1.2$\sim$5.0 times over the existing methods.

Implementation of Small-Scale Wind Turbine Monitoring and Control System Based on Wireless Sensor Network (무선 센서 네트워크 기반 소규모 풍력발전기 모니터링 및 제어 시스템 구현)

  • Kim, Do-Young;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1808-1818
    • /
    • 2015
  • Recently, the wind power has experienced great attentions and growths among many renewable energy sources. To increase the power generation performance and economic feasibility, the size of wind turbine (WT) is getting bigger and most of wind power plants are being constructed on offshore. Therefore, the maintenance cost is relatively high because boats or helicopters are needed operators to reach the WT. In order to combat this kind of problem, remote monitoring and control system for the WT is needed. In this paper, the small-scale WT monitoring and control system is implemented using wireless sensor network technologies. To do this, sensor devices are installed to measure and send the WT status and control device is installed to receive control message for specific operation. The WT is managed by control center through graphic user interface (GUI) based monitoring and control software. Also, smart device based web-program is implemented to make the remote monitoring of the WT possible even though operators are not in control room.

Development of Permanent Reference Electrode for Corrosion Monitoring of Underground Metallic Structures (지중 금속구조물 부식감시를 위한 영구매설용 기준전극 개발)

  • Ha, Y.C.;Bae, J.H.;Ha, T.H.;Lee, H.G.;Lee, J.D.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.532-534
    • /
    • 2004
  • The advancement of electronics and telecommunication technologies has forced the risk management system for underground metallic structures to evolve into the remote monitoring and control system. Especially, facilities such as gas pipelines, oil pipelines and water distribution lines might make hazardous effect on human safety without continuous monitoring and control. As a result, pipeline engineers have applied cathodic protection system to prevent the degradation of their facilities by corrosion and carried out a periodic monitoring of the pipe-to-soil (P/S) potentials at numberous test boxes along their pipelines. The latter action on a road in downtowns, however, is so much dangerous that the inspectors should be ready to suffer the threatening of their lives and maintenance. In order to minimize these social costs and hazards, a stand-alone type corrosion monitoring equipment which can be installed in test box, store the P/S data for given Belied and send the data by wired/wireless telecommunications is under development. In order to obtain the exact P/S data, however, a reference electrode should be located as close to the pipeline as possible. Actually, the measured potential by a conventional portable reference electrode contain inevitably an IR drop portion caused by the current flow from the cathodic protection rectifier or the subway railroad. To minimize this error, it is recommended that the reference electrode should be buried within 10 cm from the pipeline. In this paper, we describe the design parameters for fabricating the permanent type reference electrode and the characteristics of the developed reference electrode.

  • PDF

Development of Remote Monitoring and Control Device of 50KW Photovoltaic System (50KW 태양광발전의 원격 감시제어시스템에 관한 연구)

  • Park, Jeabum;Kim, Byungmok;Shen, Jian;Rho, Daeseok
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.3
    • /
    • pp.7-14
    • /
    • 2011
  • This paper deals with the efficient management for the intelligent distribution system related with the renewable energy sources, using the wire-wireless monitoring and control device. This device is mainly composed of 2 sections. One is monitoring device with the Autobase S/W and the other is control device using PLC. This paper proposes a wire and wireless monitoring and control device which can monitor and control the 50Kw PV system installed remotely (about 1Km) in the campus of the Korea University of Technology and Education. By the analysis of PV output characteristic using the device proposed in this paper, it is confirmed that the device can contribute the maintenance of PV system and also the establishment of Smart Grid.

A Study on the Streetlight Remote Control System using Radio Frequency (RF를 이용한 도로 가로등 원격제어시스템에 관한 연구)

  • Lee, Kwang-Hee;Lee, Sung-Yeob;Baek, Sung-Ho;Park, Jae-Mun;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.508-512
    • /
    • 2014
  • This paper suggests the control system and algorithm for auto and manual control of the streetlight using RF system. There are two control system in this auto control algorithm. One is group control, the other individual control. In case of group control, if a car is detected by the object detecting sensor of the system installed on the streetlight, it will turn on the light per group by transmitting the RF signal. The streetlight turns on separately when it detects people or a car parked on the shoulder in accordance with the individual control. Also, there is manual control algorithm that manager can check surrounding environment and condition of the streetlight by RF signal and various sensors. So, not only the proposed system reduce meaningless energy consumption, but also it offers convenience regarding maintenance and control of the streetlight.

Survey of System Architectures of Meteorological Satellite Image Processing System for Building NMSC Image Processing Systems (국가기상위성센터 영상처리 시스템 구축을 위한 국내외 기상위성 영상처리 시스템 아키텍처 분석)

  • Kuk, Seung-Hak;Seo, Yong-Jin;Kim, Hyeon-Soo;SaKong, Young-Bo;Lee, Bong-Ju;Jang, Jae-Dong;Oh, Hyun-Jong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.101-116
    • /
    • 2012
  • In this paper, we have surveyed the existing architectures of the image processing systems for several meteorological satellites and identified issues which are taken into consideration to construct the advanced meteorological satellite image processing system that is being developed by NMSC(National Meteorological Satellite Center). Most of the existing systems provide the functionalities of the image acquisition, the image processing, the data management, and the data dissemination. Those systems have some common problems with respect to system integration and system maintenance. To solve these problems, NOAA, NWS and ESA suggest new system architectures to improve the existing systems. This paper introduces domestic and foreign approaches to build the satellite image processing systems and studies some issues and strategies for developing those systems.

A study of Landcover Classification Methods Using Airborne Digital Ortho Imagery in Stream Corridor (고해상도 수치항공정사영상기반 하천토지피복지도 제작을 위한 분류기법 연구)

  • Kim, Young-Jin;Cha, Su-Young;Cho, Yong-Hyeon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.207-218
    • /
    • 2014
  • The information on the land cover along stream corridor is important for stream restoration and maintenance activities. This study aims to review the different classification methods for mapping the status of stream corridors in Seom River using airborne RGB and CIR digital ortho imagery with a ground pixel resolution of 0.2m. The maximum likelihood classification, minimum distance classification, parallelepiped classification, mahalanobis distance classification algorithms were performed with regard to the improvement methods, the skewed data for training classifiers and filtering technique. From these results follows that, in aerial image classification, Maximum likelihood classification gave results the highest classification accuracy and the CIR image showed comparatively high precision.

Implementation of Sluice Valve management systems using GPS and AR (GPS와 증강현실을 이용한 제수변 관리시스템 구현)

  • Kim, Hwa-Seon;Kim, Chang-Young;Lee, Imgeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.151-156
    • /
    • 2017
  • In case of massive water leakage, it's crucial for field manager to quickly positioning the problematic valve and related ones. However, it's not easy for the system to find the corresponding valve and even if it's found, it can not respond quickly because it can't know the relevant information immediately. In this paper, we implement the system for identifying sluice valve positions using GPS and AR techniques. The proposed system is composed of hand held android device, remote database server and data acquisition device for DB creation. We utilize the android device's sensors including GPS, gyro, accelerometer, magnetic sensor. The system identifies the valve with matching between the position data from the remote database server, and current GPS locations of device. We use AR techniques to overlay the graphics pattern of valve positions and some additional informations on captured real scene. With this system, it will be fast and accurate for maintenance of sluice valve of municipal water system.