• 제목/요약/키워드: Remeshing

Search Result 134, Processing Time 0.022 seconds

Automated Mesh Generation For Finite Element Analysis In Metal Forming (소성 가공의 유한 요소 해석을 위한 자동 요소망 생성)

  • 이상훈;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.17-23
    • /
    • 1997
  • In the two-dimensional Finite Element Method for forming simulation, mesh generation and remeshing process are very significant. In this paper, using the modified splitting mesh generation algorithm, we can overcome the limitation of existing techniques and acquire mesh, which has optimal mesh density. A modified splitting algorithm for automatically generating quadrilateral mesh within a complex domain is described. Unnecessary meshing process for density representation is removed. Especially, during the mesh generation with high gradient density like as shear band representation, the modified mesh density scheme, which will generate quadrilateral mesh with the minimized error, which takes effect on FEM solver, is introduced.

  • PDF

Finite Element Analysis of Manufacturing Process of a 12 Point Flange Head Bolt with Emphasis on Thread Rolling Process (나사전조공정을 중시한 12각플랜지볼트의 나사제조공정의 유한요소해석)

  • Jang, S.J.;Lee, M.C.;Shim, S.H.;Son, Y.H.;Yoon, D.J.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.248-252
    • /
    • 2010
  • In this paper, three-dimensional finite element analysis of thread rolling process of a 12 point flange head bolt is conducted using a rigid-plastic finite element method based metal forming simulator AFDEX 3D. A whole sequence of cold forming processes of a long shaft bolt composed of four forging stages and final thread rolling process is simulated to reveal the mechanism of thread formation. A mesh density control function is applied near the major plastic deformation region to achieve computational efficiency. It has been shown both numerically and experimentally that longitudinal lengthening or shortening is negligible in thread rolling.

Parallel 3-D Aerodynamic Shape Optimization on Unstructured Meshes

  • Lee, Sang-Wook;Kwon, Oh-Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.45-52
    • /
    • 2003
  • A three-dimensional aerodynamic shape optimization technique in inviscid compressible flows is developed by using a parallel continuous adjoint formulation on unstructured meshes. A new surface mesh modification method is proposed to overcome difficulties related to patch-level remeshing for unstructured meshes, and the effect of design sections on aerodynamic shape optimization is examined. Applications are made to three-dimensional wave drag minimization problems including an ONERA M6 wing and the EGLIN wing-pylon-store configuration. The results show that the present method is robust and highly efficient for the shape optimization of aerodynamic configurations, independent of the number of design variables used.

A Modified Mesh Generation Algorithm Using Pollution Error (Pollution error를 이용한 개선된 요소생성 알고리즘)

  • 유형선;장준환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.34-42
    • /
    • 2001
  • In this paper, we study on a modified mesh generation method based on the pollution error estimate. This method is designed for the control of the pollution error in any patch of elements of interest. It is a well-known fact that the pollution error estimates are much more than the local one. Reliable a posteriori error estimation is possible by controlling the pollution error in the patch through proper design of the mesh outside the patch. This design is possible by equally distributing the pollution error indicators over the mesh outside the patch. The conventional feedback pollution-adaptive mesh generation algorithm needs many iterations. Therefore, the solution time is significant. But we use the remeshing scheme in the proposed method. We will also show that the pollution error reduces less than the local error.

  • PDF

A new global/local analysis using MLS (Moving Least Square)-based finite elements (이동최소제곱 기반 유한요소를 이용한 새로운 다중 스케일 해석)

  • Lim, Jae-Hyuk;Im, Se-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.405-410
    • /
    • 2007
  • We present a new global/local analysis with the aid of MLS(Moving Least Square)-based finite elements which can handle an arbitrary number of nodes on every element side. It give a great flexibility in constructing finite element meshes at the specified local regions without remeshing. Compared to other type global/local analysis, it does not require any superimposed mesh or need not solve the equilibrium equation twice as well as shows an excellent accuracy. To demonstrate the performance of proposed scheme, we will show several examples in relation to capturing highly local stress field.

  • PDF

Development of a Post-Processor for Three-Dimensional Forging Analysis (3차원 단조해석용 후처리기 개발)

  • 정완진;최석우
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.542-549
    • /
    • 2003
  • Three-dimensional forging analysis becomes an inevitable tool to make design process more reliable and more producible. In this study, in order to make the investigation for three-dimensional forging analysis more conveniently and accurately, a new post processor was developed. For post-processing of multi-stage forging simulation, efficient data structure was proposed and applied by using STL. New file architecture was developed to handle successive and huge data efficiently, common in three-dimensional forging analysis. Since sectioning and flow tracing plays an important role in the investigation of analysis result, we developed an algorithm suitable for 4-node and 10-node tetrahedron. This flow tracing algorithm can trace and reverse-trace flow through remeshing. Developed program shows good performance and functionality. Especially, a big size problem can be handled easily due to proposed data structure and file architecture.

Finite 'crack' element method (균열 유한 요소법)

  • Cho, Young-Sam;Jun, Suk-Ky;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.551-556
    • /
    • 2004
  • We propose a 2D 'crack' element for the simulation of propagating crack with minimal remeshing. A regular finite element containing the crack tip is replaced with this novel crack element, while the elements which the crack has passed are split into two transition elements. Singular elements can easily be implemented into this crack element to represent the crack-tip singularity without enrichment. Both crack element and transition element proposed in our formulation are mapped from corresponding master elements which are commonly built using the moving least-square (MLS) approximation only in the natural coordinate. In numerical examples, the accuracy of stress intensity factor $K_I$ is demonstrated and the crack propagation in a plate is simulated.

  • PDF

Numerical Investigation of Hemodynamics in a Bileaflet Mechanical Heart Valve using an Implicit FSI Based on the ALE Approach

  • Hong, Tae-Hyub;Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2410-2414
    • /
    • 2008
  • Human heart valves diseased by congenital heart defects, rheumatic fever, bacterial infection, cancer may cause stenosis or insufficiency in the valves. Treatment may be with medication but often involves valve repair or replacement (insertion of an artificial heart valve). Bileaflet mechanical heart valves (BMHVs) are widely implanted to replace the diseased heart valves, but still suffer from complications such as hemolysis, platelet activation, tissue overgrowth and device failure. These complications are closely related to both flow characteristics through the valves and leaflet dynamics. In this study, the physiological flow interacting with the moving leaflets in a bileaflet mechanical heart valve (BMHV) is simulated with a strongly coupled implicit fluid-structure interaction (FSI) method which is newly organized based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (remeshing) in FLUENT. The simulated results are in good agreement with previous experimental studies. This study shows the applicability of the present FSI model to the complicated physics interacting between fluid flow and moving boundary.

  • PDF

Effective Mesh Optimization Rule for finite Element Method Using Energy Minimization (최소 에너지 원리를 이용한 효율적인 유한요소 격자 생성에 관한 연구)

  • 박시형;김지환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.361-368
    • /
    • 2002
  • A new remeshing algorithm based on the energy minimization is proposed for the finite element method. This utilizes the variation of mapping function between the master and global elements. The resultant equations are only the other form of the governing equations. However the equations have an important information about the relations between the elements. By assuming the solutions of the governing equations, these relations are used very usefully for the mesh optimization. The explicit formulations are presented for the relations of 1-dimensional equations and some examples are solved for comparison with the other methods. In addition, 2-dimensional expansion is presented for the general use.

  • PDF

Advances in Simulation of Arbitrary 3D Crack Growth using FRANC3Dv5

  • Wawrzynek, P.A.;Carter, B.J.;Hwang, Chang-Yu;Ingraffea, A.R.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.607-613
    • /
    • 2010
  • FRANC3D is a program for simulating arbitrary three-dimensional crack growth. Recently, a completely new version of the program, FRANC3D/NG, has been created. Unlike previous versions, which relied largely on boundary element analysis, the new version of the program works with finite element analysis exclusively and is designed to work with general-purpose commercial finite element packages. This paper presents the theoretical underpinnings of the procedures to adaptively modify the geometry and mesh of a model to simulate crack growth.