• Title/Summary/Keyword: Remediation technology

Search Result 409, Processing Time 0.028 seconds

Preliminary ALARA residual radioactivity levels for Kori-1 decommissioning and analysis of results and effects of remediation area

  • Seo, Hyung-Woo;Yu, Ji-Hwan;Kim, Gi-Lim;Son, Jin-Won
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1136-1144
    • /
    • 2022
  • The effects of nearby residents and the public by the residual contamination from the decommissioning of nuclear facilities should comply with the dose criteria, and whether additional remediation action is necessary from the ALARA perspective must be determined. Therefore, we analyzed the requirements of ALARA action levels and performed preliminary ALARA evaluation. The ratio of residual contamination concentration to DCGL was calculated for the basement fill and the building occupancy mode. The results showed that the additional remediation actions below DCGL are not justified. In addition, we analyzed the effect of remediation area. It was noted that the increase of the remediation area showed a positive correlation with the Conc/DCGL value in the basement fill mode. On the other hand, in the building occupancy mode, since the floor area of the building is the target of remediation and has the effect of increasing the same as the evaluation area of the building occupants, but due to the difference in the amount of increase, the Conc/DCGL showed a negative correlation. We expect the approach and method of ALARA evaluation can be utilized for concrete cost-benefit calculation during the decommissioning or at the time of remediation.

The Behavior of Anionic Surfactant Calfax 16L-35 in Electrokinetic Remediation

  • 양지원;이유진;박지연;김상준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.306-309
    • /
    • 2003
  • Surfactant-enhanced electrokinetic (EK) remediation is an emerging technology that can effectively remove hydrocarbons from low-permeability soils. In this study, the electrokinetic remediation using Calfax 16L-35 was conducted for the removal of phenanthrene from kaolinite. An anionic surfactant Calfax 16L-35 was used at concentrations of 5, 15, and 30g/L to enhance the solubility of phenanthrene. When the surfactant solution was applied to EK system, low electrical potential gradient was maintained because of its ions. Even when the surfactant concentration was high, the removal efficiency of phenanthrene was low After the operation, most of surfactants were remained in soil and there were few in effluent. This phenomena was observed because the migration of Calfax 16L-35 from cathode to anode was predominant over electroosmotic flow which moved in opposite direction. Therefore, the anionic surfactant Calfax 16L-35 is considered to be improper in surfactant - enhanced electrokinetic remediation.

  • PDF

A Study on the Pretreatment of Activated Sludge for Bio-hydrogen Production Process (생물학적 수소생산 공정 개발을 위한 오니 슬러지 전처리에 대한 연구)

  • Park, Dae-Won;Kim, Dong-Kun;Kim, Ji-Seong;Park, Ho-Il
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.187-193
    • /
    • 2004
  • In this study, Anaerobic sewage sludge in a batch reactor operation at $35^\circ{C}$ was used as the seed to investigate the effect of pretreatments of waste activated sludge and to evaluate its hydrogen production potential by anaerobic fermentation. Various pretreatments including physical, chemical and biological means were conducted to utilize for substrate. As a result, SCODcr of alkali and mechanical treatment was 15 and 12 times enhanced, compared with a supernatant of activated sludge. And SCODcr was 2 time increase after re-treatment with biological hydrolysis. Those were shown that sequential hybridized treatment of sludge by chemical & biological methods to conform hydrogen production potential in bath experiments. When buffer solution was added to the activated sludge, hydrogen production potential increased as compare with no addition. Combination of alkali and mechanical treatment was higher in hydrogen production potential than other treatments.

Improvement of Cathode Reaction of a Mediatorless Microbial Fuel Cell

  • Pham, The-Hai;Jang, Jae-Kyung;Chang, In-Seop;Kim, Byung-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.324-329
    • /
    • 2004
  • Oxygen diffuses through the cation-specific membrane, reducing the coulomb yield of the fuel cell. In the present study, attempts were made to enhance current generation from the fuel cell by lowering the oxygen diffusion, including the uses of ferricyanide as a cathode mediator and of a platinum-coated graphite electrode. Ferricyanide did not act as a mediator as expected, but as an oxidant in the cathode compartment of the microbial fuel cell. The microbial fuel cell with platinum-coated graphite cathode generated a maximum current 3-4 times higher than the control fuel cell with graphite cathode, and the critical oxygen concentration of the former was 2.0 mg $1^{-1}$, whilst that of the latter was 6.6 mg $1^{-1}$. Based on these results, it was concluded that inexpensive electrodes are adequate for the construction of an economically feasible microbial fuel cell with better performance as a novel wastewater treatment process.

Status of Soil Remediation and Technology Development in Korea (국내 오염토양 복원 현황과 기술 동향)

  • Yang, Ji-Won;Lee, You-Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.311-318
    • /
    • 2007
  • Soil contamination in Korea has been accelerated every year. Because of their persistence and cumulative tendency in the environment, soil contaminants have potential long-term environmental and health concerns and it is estimated to cost enormous expense for clean-up. Korea government has legislated the law on conservation of soil environment in mid 1990s, and managed and treated hazardous wastes in contaminated sites as a remediation policy since then. Soil remediation technologies are classified into in-situ/ex-situ or biological/physico-chemical/thermal processes according to applied places or treatment methods, respectively. In Korea, clean-up of polluted sites has been mostly carried out at military areas, railroad-related sites and small-scale oil spilt sites. For these cases, in-situ remediation technologies such as soil vapor extraction (SVE) and bioventing were mainly used. In recent days, an environmental-friendly soil remediation emerged as a new concept - for example, a new soil remediation process using nanotechnology or molecular biological study and an integrated process which can overcome the limitation of individual process. To have better applicability of remediation technologies, comprehensive understandings about the pollutants and soil characteristics and the suitable techniques are required to be investigated. Above all, development of environmental technologies based on the sustainability accompanied by public attention can improve soil environment in Korea.

Difluoromethane Synthesis over Fluorinated Metal Oxide (불화된 금속산화물 촉매상에서 이불화메탄의 합성)

  • Lee, Youn-Woo;Lee, Kyong-Hwan;Lim, Jong Sung;Kim, Jae-Duck;Lee, Youn Yong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.619-623
    • /
    • 1998
  • The influences of reaction temperature, HF/DCM mole ratio, contact time and catalyst type on activity and selectivity of difluoromethane synthesis via hydrofluoriation of dichloromethane over fluorinated catalyst have been studied. It has been found that fluorinated $Cr/Al_2O_3$ catalysts, show better performance compared to pure fluorinated $Al_2O_3$ catalyst and then, non-treated catalysts demonstrate better than catalysts pretreated with hydrogen and air. The results show that the optimum reaction conditions are found as follows : reaction temperature at $340^{\circ}C$, mole ratio of HF/DCM 5 or above and contact time 20 sec. or above. With these conditions the maximum attainable yield of difluoromethane has been found to be greater than 80%. In particular, the activity and the selectivity of difluoromethane do not change with the reaction time on stream up to 8 hours.

  • PDF

The Characteristics of Soil Remediation by Soil Flushing System Using PVDs (연직배수재를 이용한 토양세정시스템의 오염토양정화 특성)

  • Park, Jeong-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.5
    • /
    • pp.76-86
    • /
    • 2007
  • For the purpose of ground improvement by means of soil flushing systems. Incorporated technique with prefabricated vertical drains have been used for dewatering from fine-grained soils. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. A mathematical model for prediction of contaminant transport using the PVD technology has been developed. The clean-up times for the predictions on both soil condition indicate more of a sensitivity to the dispersivity parameter than to the extracted flow rate and vertical velocity parameters. Based on the results of the analyses, numerical analysis indicate that the most important factor to the in-situ soil remediation in prefabricated vertical drain system is the effective diameter of contaminated soil.

Bacterial Communities in Microbial Fuel Cells Enriched with High Concentrations of Glucose and Glutamate

  • Choo Yeng-Fung;Lee Ji-Young;Chang In-Seop;Kim Byung-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.9
    • /
    • pp.1481-1484
    • /
    • 2006
  • In this study, glucose and glutamate (copiotrophic conditions) were used to enrich electrochemically active bacteria (EAB) in a microbial fuel cell (MFC). The enriched population consisted primarily of ${\gamma}$-Proteobacteria (36.5%), followed by Firmicutes (27%) and O-Proteobacteria (15%). Accordingly, we compared our own enrichments done under many different conditions with those reported from the literature, all of which support the notion that electrochemically active bacteria are taxonomically very diverse. Enrichments with different types and levels of energy sources (fuels) have clearly yielded many different groups of bacteria.

다종 중금속으로 오염된 사질토에 대한 EK Flushing 기술 적용

  • 김병일;한상재;이군택;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.310-313
    • /
    • 2003
  • The precipitation of heavy metals within the region of pH jump is inevitable in the conventional electrokinetic remediation technology. This study prevents the interest species from precipitating through the injection of flushing solutions in which HCl, acetic acid, citric acid, EDTA and SDS dissolved. The cumulative flow resulted from electroosmosis appear in order of Citric acid

  • PDF