• Title/Summary/Keyword: Remains compressive strength

Search Result 26, Processing Time 0.023 seconds

Effects of subsequent curing on chloride resistance and microstructure of steam-cured mortar

  • Hu, Yuquan;Hu, Shaowei;Yang, Bokai;Wang, Siyao
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.449-457
    • /
    • 2020
  • The influence of subsequent curing on the performance of fly ash contained mortar under steam curing was studied. Mortar samples incorporated with different content (0%, 20%, 50% and 70%) of Class F fly ash under five typical subsequent curing conditions, including standard curing (ZS), water curing(ZW) under 25℃, oven-dry curing (ZD) under 60℃, frozen curing (ZF) under -10℃, and nature curing (ZN) exposed to outdoor environment were implemented. The unsteady chloride diffusion coefficient was measured by rapid chloride migration test (RCM) to analyze the influence of subsequent curing condition on the resistance to chloride penetration of fly ash contained mortar under steam curing. The compressive strength was measured to analyze the mechanical properties. Furthermore, the open porosity, mercury intrusion porosimetry (MIP), x-ray diffraction (XRD) and thermogravimetric analysis (TGA) were examined to investigate the pore characteristics and phase composition of mortar. The results indicate that the resistance to chloride ingress and compressive strength of steam-cured mortar decline with the increase of fly ash incorporated, regardless of the subsequent curing condition. Compared to ZS, ZD and ZF lead to poor resistance to chloride penetration, while ZW and ZN show better performance. Interestingly, under different fly ash contents, the declining order of compressive strength remains ZS>ZW>ZN>ZD>ZF. When the fly ash content is blow 50%, the open porosity grows with increase of fly ash, regardless of the curing conditions are diverse. However, if the replacement amount of fly ash exceeds a certain high proportion (70%), the value of open porosity tends to decrease. Moreover, the main phase composition of the mortar hydration products is similar under different curing conditions, but the declining order of the C-S-H gels and ettringite content is ZS>ZD>ZF. The addition of fly ash could increase the amount of harmless pores at early age.

A Fundamental Study on the Development of Soil Stabilization Materials for Soil Mixing Method using Vietnam Fly Ash and Blast Furnace Slag (베트남 플라이애시 및 고로슬래그를 활용한 지반혼합공법용 지반안정재 개발을 위한 기초연구)

  • Jae-Hyun, Park;Wan-Gyu, Yoo;Se-Gwan, Seo;Kwang-Wu, Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.111-121
    • /
    • 2022
  • It has been reported that current amount of coal ash remains almost 100 million tons and 5.85 million tons of blast furnace slag are generated annually in Vietnam. Vietnam government has encouraged the industries to increase the use of coal ash and blast furnace slag as construction materials as well as in cement production institutionally. However, limited can be applied in the construction field yet. Therefore, in this study, basic performance analysis on five different kinds of fly ash from Vietnam was conducted. In addition, the performances of blast furnace slags generated in Vietnam and Korea were compared and evaluated. Soil stabilizer compressive strength test and solidified soil unconfined compressive strength test were conducted as the basic data for the development of soil stabilizer applied to the soil mixing method using fly ash and blast furnace slag generated in Vietnam. The results showed that the Vietnamese fly ash and blast furnace slag can be used as the raw materials for soil stabilization and improvement.

Shear Transfer across Cracks in Reinforced Concrete Members (RC 부재 균열면에서의 전단력 전달에 관한 고찰)

  • 홍성걸;하태훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.527-532
    • /
    • 2000
  • Cracks in reinforced concrete members are important element in structural analysis and design. It is clear from the test results that shear strength of cracked member is remarkably degraded compared with uncracked one. However, considerable amount of shear resistance by such mechanisms as aggregate interlock and dowel action is still active. There are various approaches to shear transfer estimation including finite element analysis, fracture mechanics, upper bound theory of plasticity, etc., but working out comprehensive and consistent models and manageable equations is rather difficult and remains to be improved. Shear transfer problems under cyclic loading and effective compressive strength of cracked concrete have not been adequately investigated and need further systematic research.

  • PDF

A Study on the Geotechnical Charateristics of Corestone Ground Mass (핵석 지반의 공학적 특성 연구)

  • Lee, Su-Gon;Kim, Dong-Eun;Lee, Chun-Young;Kim, Jae-Heun;Yang, Hong-Suk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.1
    • /
    • pp.68-76
    • /
    • 2004
  • Corestone ground mass has complicated characteristics as it is made up of hard and stiff corestone in a relatively weak and soft matrix. Model corestone ground mass whichis physically identical with the stiff corestone in weak matrix were tested in uniaxial compression. The tests showthat the increase of the corestone proportion brought the gradual increase of the elastic modulus as well. The ground mass was weaker when the corestone proportion was low while it was stronger in higher corestone proportion. The size of the corestone had no influence on the strength and elastic modulus as long as the proportion of the corestone remains same.

Flexural Pinching and Energy Dissipation Capacity (휨핀칭과 에너지 소산능력)

  • 박흥근;엄태성
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.275-285
    • /
    • 2003
  • Pinching is an important property of reinforced concrete member which characterizes its cyclic behavior. In the present study, numerical studies were performed to investigate the characteristics and mechanisms of pinching behavior and the energy dissipation capacity of flexure-dominated reinforced concrete members. By analyzing existing experimental studies and numerical results, it was found that energy dissipation capacity of a member is directly related to energy dissipated by re-bars rather than concrete that is a brittle material, and that it is not related to magnitude of axial compressive force applied to the member. Therefore, for a member with specific arrangement and amount of re-bars, the energy dissipation capacity remains uniform regardless of the flexural strength that is changed by the magnitude of axial force applied. Due to the uniformness of energy dissipation capacity pinching appears in axial compression member. The flexural pinching that is not related to shear force becomes conspicuous as the flexural strength increases relatively to the uniform energy dissipation capacity. Based on the findings, a practical method for estimating energy dissipation capacity and damping modification factor was developed and verified with existing experiments.

  • PDF

Enhancement of high temperature cycling stability in high-nickel cathode materials with titanium doping

  • Song, Jun-Ho;Bae, Joongho;Lee, Ko-woon;Lee, Ilbok;Hwang, Keebum;Cho, Woosuk;Hahn, Sang June;Yoon, Songhun
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.124-128
    • /
    • 2018
  • Titanium doping is employed to enhance the structural strength of a high-Ni layered cathode material in lithium ion batteries during high temperature cycling. After Ti-doping, the external morphology remains similar, but the lattice parameters of the layered structure are slightly shifted toward larger values. With application of the prepared materials as cathodes in lithium-ion batteries, the initial capacities are similar but the cycling performance at $25^{\circ}C$ is enhanced by Ti-doping. During high temperature cycling at $60^{\circ}C$, furthermore, highly improved capacity retention is achieved with the Ti-doped material (95% of initial capacity at 50th cycles), while cycle fading is accelerated with the bare electrode. This enhancement is attributed to better retention of the compressive strength of the particles and retarded crack formation within the particles. In addition, impedance increase is reduced in the Ti-doped electrode, which is attributed to an improvement in the structural strength of the high-Ni cathode material with Ti-doping.

A review and analysis of circular UHPC filled steel tube columns under axial loading

  • Hoang, An Le;Fehling, Ekkehard
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.417-430
    • /
    • 2017
  • Ultra high performance concrete (UHPC) has aroused interest around the world owing to superior mechanical and durability properties over conventional concrete. However, the application of UHPC in practice poses difficulties due to its inherent brittleness. UHPC filled in steel tube columns (UHPC-FSTCs) are capable of restricting the brittle failure of non-reinforced UHPC columns and forming a high performance member with enhancement of strength and ductility. Currently, research on UHPC-FSTCs remains very limited and there is relatively little information about the mechanical behavior of these columns. Therefore, this study presents a review of past experimental studies to have a deeper insight into the compressive behavior of UHPC-FSTCs under axial loading on entire section and on concrete core. Based on the test results obtained from Schneider (2006) and Xiong (2012), an analysis was conducted to investigate the influence of the confinement index (${\xi}$) and diameter to steel tube thickness ratio (D/t) on the strength and the ductility in short circular UHPC-FSTCs. Furthermore, the appropriateness of current design codes including EC4, AISC, AIJ and previous analytical models for estimating the ultimate loads of composite columns was also examined by the comparison between the predictions and the test results. Finally, simplified formulae for predicting the ultimate loads in two types of loading pattern were proposed and verified.

Development of lightweight Fly ash-Plastic Aggregate (석탄회 및 폐플라스틱을 이용한 인공경량합성골재의 개발)

  • Jo Byung Wan;Park Seung Kook;Park Jong Bin;Jansen Daniel C.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.380-383
    • /
    • 2004
  • The coarse and fine aggregates that make up the majority of concrete are resources. But, the raw naturals that make up concrete are our earth's resources and there is not a replenishable stock. Also industrial waste and life waste leaped into a pollution source. Therefore, as construction continue, quarries are exhausted and new sources must be discovered. The purpose of this paper is to investigate an application of recycled coal ash plastics in the construction field. The study examined the physical and mechanical properties of recycled coal ash plastics aggregate. In the results, although the absorption and specific gravity of SLAs increases slightly as the fly ash content increases, the compressive strength and modulus of elastic of concrete made with SLAs remains relatively constant when mortar type and volume fraction are also held constant. These values are always lower than natural-weight aggregate concretes.

  • PDF

Utilising artificial neural networks for prediction of properties of geopolymer concrete

  • Omar A. Shamayleh;Harry Far
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.327-335
    • /
    • 2023
  • The most popular building material, concrete, is intrinsically linked to the advancement of humanity. Due to the ever-increasing complexity of cementitious systems, concrete formulation for desired qualities remains a difficult undertaking despite conceptual and methodological advancement in the field of concrete science. Recognising the significant pollution caused by the traditional cement industry, construction of civil engineering structures has been carried out successfully using Geopolymer Concrete (GPC), also known as High Performance Concrete (HPC). These are concretes formed by the reaction of inorganic materials with a high content of Silicon and Aluminium (Pozzolans) with alkalis to achieve cementitious properties. These supplementary cementitious materials include Ground Granulated Blast Furnace Slag (GGBFS), a waste material generated in the steel manufacturing industry; Fly Ash, which is a fine waste product produced by coal-fired power stations and Silica Fume, a by-product of producing silicon metal or ferrosilicon alloys. This result demonstrated that GPC/HPC can be utilised as a substitute for traditional Portland cement-based concrete, resulting in improvements in concrete properties in addition to environmental and economic benefits. This study explores utilising experimental data to train artificial neural networks, which are then used to determine the effect of supplementary cementitious material replacement, namely fly ash, Ground Granulated Blast Furnace Slag (GGBFS) and silica fume, on the compressive strength, tensile strength, and modulus of elasticity of concrete and to predict these values accordingly.

Evaluation of Fundamental Properties and Chloride Penetration Resistance of Concrete using Superabsorbent Polymers (고 흡수성 폴리머를 혼입한 콘크리트의 기초 물성 및 염화물 침투 저항성 평가)

  • Lee, Chan-Kyu;Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.50-59
    • /
    • 2020
  • Superabsorbent Polymer (SAP) expands inside concrete by absorbing water and contracts as it discharges water. Through this process, concrete can achieve the internal curing effect, but the space occupied by the expanded SAP remains as a void. In this study, the effects of SAP internal curing and voids were evaluated by evaluating the fundamental properties and chloride penetration resistance of SAP mixed concrete. Also, to evaluate the internal curing effect by SAP, the tests were carried out under water and sealed curing conditions, respectively. From the result, the compressive strength of water curing did not differ significantly according to the mixing ratio of SAP. In the case of sealed curing, however, the compressive strength tended to increase as the mixing ratio of SAP increased. The internal curing effect of sealed curing was considered to have influenced the increase in compressive strength. In the case of the chloride diffusion coefficient, the diffusion coefficient tended to decrease as the mixing ratio of SAP increased. In particular, as the sealed curing is applied, the chloride penetration resistance is further improved due to internal curing effect. If the curing conditions are different, it is considered inappropriate to estimate the chloride penetration resistance by the surface electrical resistivity.