Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.07.036

Enhancement of high temperature cycling stability in high-nickel cathode materials with titanium doping  

Song, Jun-Ho (Advanced Batteries Research Center, Korea Electronics Technology Institute)
Bae, Joongho (School of Integrative Engineering, Chung-Ang University)
Lee, Ko-woon (Advanced Batteries Research Center, Korea Electronics Technology Institute)
Lee, Ilbok (School of Integrative Engineering, Chung-Ang University)
Hwang, Keebum (School of Integrative Engineering, Chung-Ang University)
Cho, Woosuk (Advanced Batteries Research Center, Korea Electronics Technology Institute)
Hahn, Sang June (Department of Physics, Chung-Ang University)
Yoon, Songhun (School of Integrative Engineering, Chung-Ang University)
Publication Information
Journal of Industrial and Engineering Chemistry / v.68, no., 2018 , pp. 124-128 More about this Journal
Abstract
Titanium doping is employed to enhance the structural strength of a high-Ni layered cathode material in lithium ion batteries during high temperature cycling. After Ti-doping, the external morphology remains similar, but the lattice parameters of the layered structure are slightly shifted toward larger values. With application of the prepared materials as cathodes in lithium-ion batteries, the initial capacities are similar but the cycling performance at $25^{\circ}C$ is enhanced by Ti-doping. During high temperature cycling at $60^{\circ}C$, furthermore, highly improved capacity retention is achieved with the Ti-doped material (95% of initial capacity at 50th cycles), while cycle fading is accelerated with the bare electrode. This enhancement is attributed to better retention of the compressive strength of the particles and retarded crack formation within the particles. In addition, impedance increase is reduced in the Ti-doped electrode, which is attributed to an improvement in the structural strength of the high-Ni cathode material with Ti-doping.
Keywords
Titanium doping; High Ni layered cathode; Lithium ion batteries; Particle strength;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Patoux, M.M. Doeff, Electrochem. Commun. 6 (2004) 767.   DOI
2 Y.S. He, X.Z. Liao, Y. Jiang, Z.F. Ma, J. Power Sources 163 (2007) 1053.   DOI
3 T. Ohzuku, Y. Makimura, Chem. Lett. 30 (2001) 642.   DOI
4 L. Wang, J. Li, W. Pu, C. Wan, C. Jiang, X. He, J. Solid State Electrochem.13 (2009) 1157.   DOI
5 T.H. Cho, S.M. Park, T. Hirai, Y. Hideshima, M. Yoshio, J. Power Sources 142 (2005) 306.   DOI
6 B.J. Hwang, Y.W. Tsai, D. Carlier, G. Ceder, Chem. Mater. 15 (2003) 3676.   DOI
7 Z. Lu, J.R. Dahn, J. Electrochem. Soc. 148 (2001) A237.   DOI
8 D.P. Abraham, R.D. Twesten, M. Balasubramanian, U. Petrov, J. McBreen, K. Amine, Electrochem. Commun. 4 (2002) 620.   DOI
9 S. Jouanneau, W. Bahmet, K.W. Eberman, L.J. Krause, J.R. Dahna, J. Electrochem. Soc. 151 (2004) A1789.   DOI
10 D.C. Li, T. Muta, L.Q. Zhang, M. Yoshio, H. Noguchi, J. Power Sources 132 (2004) 150.   DOI
11 Y. Hiramatsu, Y. Oka, H. Kiyama, J. Min. Inst. Jpn. 81 (1965) 1024.
12 S.-H. Han, J.H. Song, T. Yim, Y.-J. Kim, J.-S. Yu, S. Yoon, J. Electrochem. Soc. 163 (2016) A748.   DOI
13 J.H. Song, Y.J. Kim, J. Kim, S.M. Oh, S. Yoon, Bull. Korean Chem. Soc. 37 (2016) 1298.   DOI
14 A. Gasmi, M. Boudard, S. Zemni, F. Hippert, M. Oumezzine, J. Phys. D Appl. Phys. 22 (2009) 225408.
15 H. Seo, S. Na, B. Lee, T. Yim, S.H. Oh, J. Ind. Eng.Chem. 64 (2018) 311.   DOI
16 Ji-Hyun Kim, Min-Jung Jung, Min-Ji Kim, Young-Seak Lee, J. Ind. Eng. Chem. 61 (2018) 368.   DOI