• Title/Summary/Keyword: Remaining useful life (RUL)

Search Result 31, Processing Time 0.022 seconds

Data-Driven Approach for Lithium-Ion Battery Remaining Useful Life Prediction: A Literature Review

  • Luon Tran Van;Lam Tran Ha;Deokjai Choi
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.63-74
    • /
    • 2022
  • Nowadays, lithium-ion battery has become more popular around the world. Knowing when batteries reach their end of life (EOL) is crucial. Accurately predicting the remaining useful life (RUL) of lithium-ion batteries is needed for battery health management systems and to avoid unexpected accidents. It gives information about the battery status and when we should replace the battery. With the rapid growth of machine learning and deep learning, data-driven approaches are proposed to address this problem. Extracting aging information from battery charge/discharge records, including voltage, current, and temperature, can determine the battery state and predict battery RUL. In this work, we first outlined the charging and discharging processes of lithium-ion batteries. We then summarize the proposed techniques and achievements in all published data-driven RUL prediction studies. From that, we give a discussion about the accomplishments and remaining works with the corresponding challenges in order to provide a direction for further research in this area.

Remaining useful life prediction for PMSM under radial load using particle filter

  • Lee, Younghun;Kim, Inhwan;Choi, Sikgyoung;Oh, Jaewook;Kim, Namsu
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.799-805
    • /
    • 2022
  • Permanent magnet synchronous motors (PMSMs) are widely used in systems requiring high control precision, efficiency, and reliability. Predicting the remaining useful life (RUL) with health monitoring of PMSMs prevents catastrophic failure and ensures reliable operation of system. In this study, a model-based method for predicting the RUL of PMSMs using phase current and vibration signals is proposed. The proposed method includes feature selection and RUL prediction based on a particle filter with a degradation model. The Paris-Erdogan model describing micro fatigue crack propagation is used as the degradation model. An experimental set-up to conduct accelerated life test, capable of monitoring various signals was designed in this study. Phase current and vibration data obtained from an accelerated life test of the PMSMs were used to verify the proposed approach. Features extracted from the data were clustered based on monotonicity and correlation clustering, respectively. The results identify the effectiveness of using the current data in predicting the RUL of PMSMs.

Cost-optimal Preventive Maintenance based on Remaining Useful Life Prediction and Minimum-repair Block Replacement Models (잔여 유효 수명 예측 모형과 최소 수리 블록 교체 모형에 기반한 비용 최적 예방 정비 방법)

  • Choo, Young-Suk;Shin, Seung-Jun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.18-30
    • /
    • 2022
  • Predicting remaining useful life (RUL) becomes significant to implement prognostics and health management of industrial systems. The relevant studies have contributed to creating RUL prediction models and validating their acceptable performance; however, they are confined to drive reasonable preventive maintenance strategies derived from and connected with such predictive models. This paper proposes a data-driven preventive maintenance method that predicts RUL of industrial systems and determines the optimal replacement time intervals to lead to cost minimization in preventive maintenance. The proposed method comprises: (1) generating RUL prediction models through learning historical process data by using machine learning techniques including random forest and extreme gradient boosting, and (2) applying the system failure time derived from the RUL prediction models to the Weibull distribution-based minimum-repair block replacement model for finding the cost-optimal block replacement time. The paper includes a case study to demonstrate the feasibility of the proposed method using an open dataset, wherein sensor data are generated and recorded from turbofan engine systems.

Estimation of Remaining Useful Life for Bearing of Wind Turbine based on Classification of Trend (상태지수의 경향성 분류에 기반한 풍력발전기 베어링 잔여수명 추정)

  • Yun-Ho Seo;SangRyul Kim;Pyung-Sik Ma;Jung-Han Woo;Dong-Joon Kim
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.34-42
    • /
    • 2023
  • The reduction of operation and maintenance (O&M) costs is a critical factor in determining the competitiveness of wind energy. Predictive maintenance based on the estimation of remaining useful life (RUL) is a key technology to reduce logistic costs and increase the availability of wind turbines. Although a mechanical component usually has sudden changes during operation, most RUL estimation methods use the trend of a state index over the whole operation period. Therefore, overestimation of RUL causes confusion in O&M plans and reduces the effect of predictive maintenance. In this paper, two RUL estimation methods (load based and data driven) are proposed for the bearings of a wind turbine with the results of trend classification, which differentiates constant and increasing states of the state index. The proposed estimation method is applied to a bearing degradation test, which shows a conservative estimation of RUL.

Prediction of Remaining Useful Life (RUL) of Electronic Components in the POSAFE-Q PLC Platform under NPP Dynamic Stress Conditions

  • Inseok Jang;Chang Hwoi Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1863-1873
    • /
    • 2024
  • In the Korean domestic nuclear industry, to analyze the reliability of instrumentation and control (I&C) systems, the failure rates of the electronic components constituting the I&C systems are predicted based on the MIL-HDBK-217F standard titled 'Reliability Prediction of Electronic Equipment'. Based on these predicted failure rates, the mean time to failure of the I&C systems is calculated to determine the replacement period of the I&C systems. However, this conventional approach to the prediction of electronic component failure rates assumes that factors affecting the failure rates such as ambient temperature and operating voltage are static constants. In this regard, the objective of this study is to propose a prediction method for the remaining useful life (RUL) of electronic components considering mean time to failure calculations reflecting dynamic environments, such as changes in ambient temperature and operating voltage. Results of this study show that the RUL of electronic components can be estimated depending on time-varying temperature and electrical stress, implying that the RUL of electronic components can be predicted under dynamic stress conditions.

Prediction of Remaining Useful Life of Lithium-ion Battery based on Multi-kernel Support Vector Machine with Particle Swarm Optimization

  • Gao, Dong;Huang, Miaohua
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1288-1297
    • /
    • 2017
  • The estimation of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is important for intelligent battery management system (BMS). Data mining technology is becoming increasingly mature, and the RUL estimation of Li-ion batteries based on data-driven prognostics is more accurate with the arrival of the era of big data. However, the support vector machine (SVM), which is applied to predict the RUL of Li-ion batteries, uses the traditional single-radial basis kernel function. This type of classifier has weak generalization ability, and it easily shows the problem of data migration, which results in inaccurate prediction of the RUL of Li-ion batteries. In this study, a novel multi-kernel SVM (MSVM) based on polynomial kernel and radial basis kernel function is proposed. Moreover, the particle swarm optimization algorithm is used to search the kernel parameters, penalty factor, and weight coefficient of the MSVM model. Finally, this paper utilizes the NASA battery dataset to form the observed data sequence for regression prediction. Results show that the improved algorithm not only has better prediction accuracy and stronger generalization ability but also decreases training time and computational complexity.

Remaining Useful Life Estimation based on Noise Injection and a Kalman Filter Ensemble of modified Bagging Predictors

  • Hung-Cuong Trinh;Van-Huy Pham;Anh H. Vo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3242-3265
    • /
    • 2023
  • Ensuring reliability of a machinery system involve the prediction of remaining useful life (RUL). In most RUL prediction approaches, noise is always considered for removal. Nevertheless, noise could be properly utilized to enhance the prediction capabilities. In this paper, we proposed a novel RUL prediction approach based on noise injection and a Kalman filter ensemble of modified bagging predictors. Firstly, we proposed a new method to insert Gaussian noises into both observation and feature spaces of an original training dataset, named GN-DAFC. Secondly, we developed a modified bagging method based on Kalman filter averaging, named KBAG. Then, we developed a new ensemble method which is a Kalman filter ensemble of KBAGs, named DKBAG. Finally, we proposed a novel RUL prediction approach GN-DAFC-DKBAG in which the optimal noise-injected training dataset was determined by a GN-DAFC-based searching strategy and then inputted to a DKBAG model. Our approach is validated on the NASA C-MAPSS dataset of aero-engines. Experimental results show that our approach achieves significantly better performance than a traditional Kalman filter ensemble of single learning models (KESLM) and the original DKBAG approaches. We also found that the optimal noise-injected data could improve the prediction performance of both KESLM and DKBAG. We further compare our approach with two advanced ensemble approaches, and the results indicate that the former also has better performance than the latters. Thus, our approach of combining optimal noise injection and DKBAG provides an effective solution for RUL estimation of machinery systems.

A Proposal of Remaining Useful Life Prediction Model for Turbofan Engine based on k-Nearest Neighbor (k-NN을 활용한 터보팬 엔진의 잔여 유효 수명 예측 모델 제안)

  • Kim, Jung-Tae;Seo, Yang-Woo;Lee, Seung-Sang;Kim, So-Jung;Kim, Yong-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.611-620
    • /
    • 2021
  • The maintenance industry is mainly progressing based on condition-based maintenance after corrective maintenance and preventive maintenance. In condition-based maintenance, maintenance is performed at the optimum time based on the condition of equipment. In order to find the optimal maintenance point, it is important to accurately understand the condition of the equipment, especially the remaining useful life. Thus, using simulation data (C-MAPSS), a prediction model is proposed to predict the remaining useful life of a turbofan engine. For the modeling process, a C-MAPSS dataset was preprocessed, transformed, and predicted. Data pre-processing was performed through piecewise RUL, moving average filters, and standardization. The remaining useful life was predicted using principal component analysis and the k-NN method. In order to derive the optimal performance, the number of principal components and the number of neighbor data for the k-NN method were determined through 5-fold cross validation. The validity of the prediction results was analyzed through a scoring function while considering the usefulness of prior prediction and the incompatibility of post prediction. In addition, the usefulness of the RUL prediction model was proven through comparison with the prediction performance of other neural network-based algorithms.

Prognostics and Health Management for Battery Remaining Useful Life Prediction Based on Electrochemistry Model: A Tutorial (배터리 잔존 유효 수명 예측을 위한 전기화학 모델 기반 고장 예지 및 건전성 관리 기술)

  • Choi, Yohwan;Kim, Hongseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.939-949
    • /
    • 2017
  • Prognostics and health management(PHM) is actively utilized by industry as an essential technology focusing on accurately monitoring the health state of a system and predicting the remaining useful life(RUL). An effective PHM is expected to reduce maintenance costs as well as improve safety of system by preventing failure in advance. With these advantages, PHM can be applied to the battery system which is a core element to provide electricity for devices with mobility, since battery faults could lead to operational downtime, performance degradation, and even catastrophic loss of human life by unexpected explosion due to non-linear characteristics of battery. In this paper we mainly review a recent progress on various models for predicting RUL of battery with high accuracy satisfying the given confidence interval level. Moreover, performance evaluation metrics for battery prognostics are presented in detail to show the strength of these metrics compared to the traditional ones used in the existing forecasting applications.

Remaining Useful Life Prediction for Litium-Ion Batteries Using EMD-CNN-LSTM Hybrid Method (EMD-CNN-LSTM을 이용한 하이브리드 방식의 리튬 이온 배터리 잔여 수명 예측)

  • Lim, Je-Yeong;Kim, Dong-Hwan;Noh, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.48-55
    • /
    • 2022
  • This paper proposes a battery remaining useful life (RUL) prediction method using a deep learning-based EMD-CNN-LSTM hybrid method. The proposed method pre-processes capacity data by applying empirical mode decomposition (EMD) and predicts the remaining useful life using CNN-LSTM. CNN-LSTM is a hybrid method that combines convolution neural network (CNN), which analyzes spatial features, and long short term memory (LSTM), which is a deep learning technique that processes time series data analysis. The performance of the proposed remaining useful life prediction method is verified using the battery aging experiment data provided by the NASA Ames Prognostics Center of Excellence and shows higher accuracy than does the conventional method.