Browse > Article
http://dx.doi.org/10.7840/kics.2017.42.4.939

Prognostics and Health Management for Battery Remaining Useful Life Prediction Based on Electrochemistry Model: A Tutorial  

Choi, Yohwan (Sogang University Department of Electronic Engineering)
Kim, Hongseok (Sogang University Department of Electronic Engineering)
Abstract
Prognostics and health management(PHM) is actively utilized by industry as an essential technology focusing on accurately monitoring the health state of a system and predicting the remaining useful life(RUL). An effective PHM is expected to reduce maintenance costs as well as improve safety of system by preventing failure in advance. With these advantages, PHM can be applied to the battery system which is a core element to provide electricity for devices with mobility, since battery faults could lead to operational downtime, performance degradation, and even catastrophic loss of human life by unexpected explosion due to non-linear characteristics of battery. In this paper we mainly review a recent progress on various models for predicting RUL of battery with high accuracy satisfying the given confidence interval level. Moreover, performance evaluation metrics for battery prognostics are presented in detail to show the strength of these metrics compared to the traditional ones used in the existing forecasting applications.
Keywords
Remaining Useful Life; Lithium-ion Battery; Prognostics and Health Management; Electrochemistry;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 K. Goebel, et al., "Prognostics in battery health management," IEEE Instrumentation & Measurement Mag., vol. 11, no. 4, Aug. 2008.
2 B. Saha, et al., "Prognostics methods for battery health monitoring using a Bayesian framework," IEEE Trans. Instrumentation and Measurement, vol. 58, no. 2, pp. 291-296, 2009.   DOI
3 ISO 13381-1, Condition monitoring and diagnostics of machines-prognostics. Part1: General guidelines, International Standard (2004), Retrieved Jan., 30, 2017, from https://www.iso.org/obp/ui#iso:std:iso:13381: -1:ed-1:v1:en
4 J. Jun, et al., "Trend on IoT device product and technology," KICS Inf. and Commun. Mag., vol. 31, no. 4, pp. 44-52, Mar. 2014.
5 K. Kim, S. Lee and J. Park "Technological trend analysis for configuration of energy storage system using retired electric vehicle battery," KICS Inf. and Commun. Mag., vol. 33, no. 7, pp. 47-52, Jun. 2016.
6 Y, Ryu and J. Park, "Open energy storage system based on a profile," KICS Inf. and Commun. Mag., vol. 33, no. 7, pp. 40-46, Jun. 2016.
7 Y. Choi and H. Kim, "Electrochemistry modeling based control of battery management system: A tutorial," KIC News, vol. 18, no. 5, pp. 47-60, 2015.
8 M. J. Daigle and S. K. Chetan, "Electrochemistry-based battery modeling for prognostics," 2013.
9 S. K. Rahimian, S. Rayman, and R. E. White, "Extension of physics-based single particle model for higher charge-discharge rates," J. Power Sources, vol. 224, pp. 180-194, Feb. 2013.   DOI
10 J. Li, S. Zhou, and Y. Han, Advances in Battery Manufacturing, Services, and Management Systems, John Wiley & Sons, 2016.
11 S. Dey and B. Ayalew, "A diagnostic scheme for detection, isolation and estimation of electrochemical faults in lithium-ion cells," in Proc. ASME 2015 Dynamic Systems and Control Conf., Columbus, Ohio, Oct. 2015.
12 J. Lee, et al., "Prognostics and health management design for rotary machinery systems-Reviews, methodology and applications," Mechanical Syst. and Sign. Process., vol. 42, no. 1, pp. 314-334, Jan. 2014.   DOI
13 J. Z. Sikorska, M. Hodkiewicz, and L. Ma, "Prognostic modelling options for remaining useful life estimation by industry," Mechanical Syst. and Sign. Process., vol. 25, no. 5, pp. 1803-1836, Jul. 2011.   DOI
14 A. T. Elsayed, C. R. Lashway, and O. A. Mohammed, "Advanced battery management and diagnostic system for smart grid infrastructure," IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 897-905, 2016.   DOI
15 J. Zhang and J. Lee, "A review on prognostics and health monitoring of Li-ion battery," J. Power Sources, vol. 196, no. 15, pp. 6007-6014, 2011.   DOI
16 L. Liao and F. Kottig, "Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction," IEEE Trans. Reliability, vol. 63, no. 1, pp. 191-207, 2014.   DOI
17 N.-H. Kim, D. An, and J.-H. Choi, Prognostics and Health Management of Engineering Systems: An Introduction, Springer, 2016.
18 H.-J. Zimmermann, "Fuzzy set theory," Wiley Interdisciplinary Rev.: Computational Statistics, vol. 2, no. 3, pp. 317-332, 2010.   DOI
19 B. Saha, K. Goebel, and J. Christophersen, "Comparison of prognostic algorithms for estimating remaining useful life of batteries," Trans. Inst. Measurement and Control, vol. 31, no. 3-4, pp. 293-308, 2009.   DOI
20 A. Malhi, R. Yan, and R. X. Gao, "Prognosis of defect propagation based on recurrent neural networks," IEEE Trans. Instrumentation and Measurement, vol. 60, no. 3, pp. 703-711, 2011.   DOI
21 J. R. Galvan, A. Saxena, and K. Goebel, "Uncertainty representation and interpretation in model-based prognostics algorithms based on kalman filter estimation," Annu. Conf. Prognostics and Health Management Soc. 2012, 2012.
22 Y. Qian and R. Yan, "Remaining useful life prediction of rolling bearings using an enhanced particle filter," IEEE Trans. Instrumentation and Measurement, vol. 64, no. 10, pp. 2696-2707, 2015.   DOI
23 R. K. Singleton, E. G. Strangas, and S. Aviyente, "Extended kalman filtering for remaining-useful-life estimation of bearings," IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1781-1790, 2015.   DOI
24 X. Zhang and P. Pisu, "An unscented kalman filter based approach for the health-monitoring and prognostics of a polymer electrolyte membrane fuel cell," Annu. Conf. Prognostics and Health Management Soc., 2012.
25 S. H. Sim, et al., "Remaining useful life prediction of Li-Ion battery based on charge voltage characteristics," Trans. Korean Soc. Mech. Eng. B, vol. 37, no. 4, pp. 313-322, 2013.   DOI
26 M. Bressel, et al., "Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load," IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2569-2577, 2016.   DOI
27 J. K. Kimotho, T. Meyer, and W. Sextro, "PEM fuel cell prognostics using particle filter with model parameter adaptation," IEEE Conf. PHM, pp. 1-6, 2014.
28 M. R. Palacin, and A. de Guibert, "Why do batteries fail?," Science, vol. 351, no. 6273, 1253292, Feb. 2016.   DOI
29 A. Saxena, et al., "Metrics for evaluating performance of prognostic techniques," IEEE Conf. PHM, pp. 1-17, 2008.
30 A. Saxena, et al., "Metrics for offline evaluation of prognostic performance," Int. J. Prognostics and Health Management, vol. 1, no. 1, pp. 4-23, 2010.