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Abstract 

 
Ensuring reliability of a machinery system involve the prediction of remaining useful life 
(RUL). In most RUL prediction approaches, noise is always considered for removal. 
Nevertheless, noise could be properly utilized to enhance the prediction capabilities. In this 
paper, we proposed a novel RUL prediction approach based on noise injection and a Kalman 
filter ensemble of modified bagging predictors. Firstly, we proposed a new method to insert 
Gaussian noises into both observation and feature spaces of an original training dataset, named 
GN-DAFC. Secondly, we developed a modified bagging method based on Kalman filter 
averaging, named KBAG. Then, we developed a new ensemble method which is a Kalman 
filter ensemble of KBAGs, named DKBAG. Finally, we proposed a novel RUL prediction 
approach GN-DAFC-DKBAG in which the optimal noise-injected training dataset was 
determined by a GN-DAFC-based searching strategy and then inputted to a DKBAG model. 
Our approach is validated on the NASA C-MAPSS dataset of aero-engines. Experimental 
results show that our approach achieves significantly better performance than a traditional 
Kalman filter ensemble of single learning models (KESLM) and the original DKBAG 
approaches. We also found that the optimal noise-injected data could improve the prediction 
performance of both KESLM and DKBAG. We further compare our approach with two 
advanced ensemble approaches, and the results indicate that the former also has better 
performance than the latters. Thus, our approach of combining optimal noise injection and 
DKBAG provides an effective solution for RUL estimation of machinery systems. 
 
 
Keywords: Bagging, data augmentation, ensemble, feature construction, Kalman filter, 
noise addition, remaining useful life. 
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1. Introduction 

1.1 Related Works 

Prognostics and Health Management (PHM) has been developed to ensure reliability and 
availability in machinery systems. PHM allows a system effectively conducts maintenance 
and manages equipment usage. One of main tasks in PHM is estimating the remaining useful 
life (RUL) of degrading equipment. Many data-driven approaches have been developed to 
predict RUL of critical equipment. Among the proposed approaches, machine learning 
approaches have been progressively favored with recent improvement in sensor systems and 
data analysis methods. Sensor data like pressure, temperature, rotor speed, and so forth can be 
simply measured, and is directly used as inputs of a machine learning method.  

Regards to data-driven approaches, many different kinds of machine learning methods and 
complemented data pre-processing algorithms have been employed to predict RUL. For 
instances, a hybrid convolutional neural network together with a feature attention algorithm 
and a multi-scale cycle attention algorithm were developed to estimate RUL of lithium-ion 
batteries [1]. Another study proposed a new hybrid machine learning algorithm by combining 
Monte Carlo simulation and adaptive dropout long short-term memory, and results showed 
that the hybrid method improved performance of battery RUL prediction [2]. Effectiveness of 
multilayer perceptron and radial basis function neural networks in RUL estimation of ball 
bearings has been investigated [3]. A support vector machine combining with information 
entropy preprocessing was proposed to predict RUL of lubricating oil [4]. A gradient boosting 
decision tree model in conjunction with relative entropy distance-based fault severity was 
integrated to estimate RUL of electronic elements [5]. These mentioned studies applied only a 
single machine learning algorithm for RUL estimation.  

In comparison to single learning algorithms, ensemble machine learning approaches 
provide better performance by combining the predictions from a number of single learning 
models. Two main types of ensemble learning methods are averaging methods and boosting 
methods. In averaging methods, a number of base estimators are independently built and then 
average their predictions, such as bagging methods, random forest. In contrast, boosting 
methods are focused on iteratively combining weak single learners to build a strong combined 
learner, such as adaptive boosting, gradient boosting. Thus, various ensemble machine 
learning approaches have been developed or utilized to enhance the RUL prediction 
performance. A previous paper presented a smart ensemble of gradient boosted trees and 
multilayer perceptron neural networks to predict RUL of degrading turbofan engines in NASA 
C-MAPSS datasets [6]. Another study proposed a novel ensemble long short-term memory 
neural network approach to enhance RUL prediction of turbofan engines [7]. A Bayesian 
optimization stacking ensemble learning method was developed for RUL prediction of a 
catenary [8]. The stacking ensemble learning method combines four learning methods with 
large differences, deep neural networks, support vector machine, extreme gradient boosting, 
and k-nearest neighbors, and thus achieves better RUL prediction results. A stacking-based 
ensemble learning method that combines five regression algorithms (linear regression, support 
vector machine, decision tree, random forest, and extreme gradient boosting) was developed to 
increase RUL prediction performance on NASA’s turbofan engine degradation datasets [9].  
An optimized random forest model was proposed to obtain the underlying mapping 
relationship between the aging features and capacity, then RUL predictions of li-ion batteries 
were achieved [10]. Furthermore, several previous studies applied Kalman filter into an 
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ensemble learning approach to attain a more accurate RUL prediction. Leto Peel proposed a 
Kalman filter-based ensemble for fusing multiple neural network model predictions over the 
dataset of PHM 2008 Data Challenge [11]. The results showed that the filtering of models can 
reduce RUL prediction error. Another study utilized the Kalman filter-based ensemble for 
fusing RUL predictions of multiple optimal learning models obtained from a genetic algorithm 
search [12].  

The above-mentioned studies focus on the advancements of new data pre-processing 
algorithms and machine learning architectures, though utilize only the original data. In all 
these approaches, noise is always regarded as redundant and removed from the observations. 
However, noise could be properly used to improve the prediction capabilities. Previous works 
also tried to investigate the application of noise in enhancing the input space and in deploying 
a stable and reliable system. Several studies have indicated that injecting noise into neural 
networks can increase the convergence speed of the training process and improve the 
predictions [13] [14] [15]. Injection of noise into the input data of a neural network during 
training could lead to crucial enhancements in prediction performance. Besides that, the noise 
change each data point, so a learning method encounter difficulties in fitting individual data 
points precisely; thus it will reduce over-fitting. A number of previous studies also utilized 
noise to avoid the over-fitting issue in machine learning methods [16] [17] [18]. Regards to the 
PHM field, it has been showed that noise utilization can enhance the faults detection 
performance for machinery systems [19] [20] [21] [22]. Nevertheless, few studies utilize noise 
for RUL prediction. We found only a previous study in which proposed a new RUL prediction 
approach by applying noise injection into a long short-term memory network [23]. Therefore, 
it is necessary to develop more approaches that can utilize noise to predict RUL. 

Inspired by the potentiality of ensemble learning and noise injection, we develop a novel 
RUL prediction approach based on Gaussian noise injection and a Kalman filter-based 
ensemble of modified bagging predictors. Firstly, we proposed a new method to insert 
Gaussian noises into observation and feature spaces of an original dataset, named GN-DAFC. 
In this way, adding noise to observations is a simple kind of data augmentation, and inserting 
noise into features corresponds to a method of feature construction. Secondly, we developed a 
modified version of the bagging method based on Kalman filter averaging, named KBAG. The 
modification is that KBAG utilizes a Kalman filter-based averaging method rather than a 
classical averaging one. Thirdly, we further developed a new ensemble method, named 
DKBAG, in which a Kalman filter ensemble of KBAGs is constructed. The Kalman filters are 
employed in both two layers of DKBAG: one inside each KBAG, and the final one outside all 
KBAG estimators. Finally, we proposed a novel RUL prediction approach 
GN-DAFC-DKBAG in which the optimal noise-injected training dataset was determined by a 
GN-DAFC-based searching strategy and then inputted to a DKBAG model. The 
GN-DAFC-based searching strategy of optimal noise injection is the main novel point in our 
approach. In this strategy, we used a cross-validated grid-search to find optimal Gaussian 
noise-related parameters such as noise intensity, proportion of inserted noisy 
observations/features. To verify the effectiveness of our approach, we compared it to a 
traditional Kalman filter-based ensemble of single learning models (KESLM). Experimental 
results over the NASA C-MAPSS dataset of aero-engines showed that our approach achieved 
significantly better performance than the latter approach, with a practically acceptable running 
time. We also found that KESLM could achieve better RUL predictions by applying the 
optimal noise injection. Moreover, we investigated our approach in case of skipping the noise 
injection strategy or the DKBAG with only original data. We observed a notable decrease in 
the prediction performance of our approach in that case. It turn out that optimal noise-injected 
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data could improve the prediction performance of both the traditional ensemble of single 
models - KESLM and the proposed ensemble approach - DKBAG. We further compared our 
approach with two advanced ensemble approaches: a heuristic Kalman filter ensemble [11] 
and an ensemble of genetic algorithms [12]. The results indicated that our approach also has 
better performance than the two previous ones. In summary, our approach of combining 
optimal noise injection and DKBAG yields a potential solution for RUL prediction of 
machinery systems. 

In the remainder of this paper, single/bagging machine learning models, the traditional 
Kalman filter-based ensemble of single machine learning models, performance metrics, and 
the cross-validated grid-search are presented in Section 2. Our proposed approach is presented 
in Section 3. Then, results of our approach and the traditional Kalman filter-based ensemble of 
single learning models are evaluated in Section 4. We further discussed the results in Section 5. 
Finally, results, limitations, and future challenges of our approach are concluded in Section 6. 

1.2 Contributions 
The main difference between our work and previous works is that we utilize both noise and 
Kalman filters to improve the prediction performance of ensemble learning methods. The 
following points denote key contributions of our work: 
- Firstly, we propose a new method to inject Gaussian noises into two spaces of an original 

dataset: observation space and feature space. This method, named GN-DAFC, 
corresponds to a simple combination of data augmentation and feature construction 
methods.  

- Secondly, we develop a modified version of the bagging method based on Kalman filter 
averaging, named KBAG. We enhance the architecture of the traditional bagging method 
by employing a Kalman filter-based averaging method rather than a classical averaging 
one. 

- Thirdly, we further developed a new ensemble method, named DKBAG, in which a 
Kalman filter ensemble of KBAGs is constructed. The Kalman filters are employed in 
both two layers of DKBAG: one inside each KBAG, and the final one outside all KBAG 
estimators. Thus, DKBAG could be considered as a two-layer Kalman filters-based 
ensemble. 

- Finally, we propose a novel RUL prediction approach GN-DAFC-DKBAG in which is 
divided into two stages as follows. First, a GN-DAFC-based searching strategy is 
conducted to find optimal Gaussian noise-related parameters such as noise intensity, 
proportion of inserted noisy observations/features. As a result, the optimal noise-injected 
training dataset was efficiently determined. This strategy is the most crucial point in our 
approach. Second, the optimal noise-injected data is then inputted into a DKBAG 
estimator to infer RUL. Our approach showed a significantly better prediction 
performance than DKBAG without noise injection, a traditional Kalman filter-based 
ensemble of single learning models, and two advanced ensemble approaches. 

2. Background 

2.1 Single machine learning models 
In this study, three classical single machine learning models such as the multi-layer perceptron 
network, decision trees, and support vector machine were employed. Detailed usage of these 
single learning models is illustrated as follows. 
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2.1.1 Multi-layer Perceptron neural networks 
A multi-layer perceptron (MLP) is a type of feed-forward artificial neural networks in which 
consists of multiple fully-connected layers [24]. It comprises three kinds of layers: the input 
layer, hidden layer, and output layer. A MLP has one input layer which receives input features 
to be handled, and one output layer that is responsible for tasks like prediction and 
classification. An arbitrary number of hidden layers which are located between the output and 
input layers are the main mechanism of MLP. Data is passed in a forward path from the input 
to the output layer in MLP. And the backpropagation learning method is applied to train all 
neurons in the MLP. The main advantages of MLP are applicability in complex non-linear 
problems and working well with large input data; though the training phase is time consuming. 
Moreover, with regard to the training phase, a MLP requires tuning a number of 
hyper-parameters such as the number of neurons in each hidden layer, the activation function 
for the hidden layers, and the solver for weight optimization.  

2.1.2 Decision Trees 
A decision tree (DT) is a non-parametric supervised learning method, which is used for both 
classification and regression problems [25]. It has a tree structure that comprises a root node, 
branches, internal nodes, and leaf nodes. An internal node, also known as a decision node 
denotes a test on a data feature, and its outgoing branches represent outcomes of the test. Leaf 
nodes or the terminal nodes represent all possible outcomes of the dataset. The DT method 
applies a divide-and-conquer strategy by executing a greedy search to determine the best split 
points within a tree. DT model can predict the values of a target variable by learning simple 
decision rules inferred from the data features. Some main advantages of a decision tree are its 
simplicity, easy interpretation, and requiring little data preparation; although a DT also has 
some disadvantages such as over-fitting issue and unstableness. Moreover, regarding the 
training process, a DT requires tuning a numbers of hyper-parameters such as the split 
criterion, the maximum depth of the tree, the minimum number of observations required to 
split an internal node. 

2.1.3 Support Vector Machines 
Support vector machine (SVM) is another supervised learning algorithm, which is used for 
both classification and regression tasks [26]. The main objective of the SVM algorithm is to 
find the hyper-plane that maximizes the margin (distance) between the hyper-plane and the 
closest data points, while also try to minimize the prediction error. The dimension of the 
hyper-plane depends upon the number of input features. In case the number of input features is 
two, then the hyper-plane is just a line. If the number of input features is three, then the 
hyper-plane becomes a 2D plane, and so on. The main advantages of SVM are applicability in 
complex non-linear problems, effectiveness in high-dimensional data, less memory 
requirement, and different or custom kernel functions can be specified for the decision 
functions; though over-fitting is a crucial problem in case the number of features is much 
greater than the number of observations, and it is also time-consuming for a huge dataset. 
Moreover, regarding the training process, a SVM requires tuning a numbers of 
hyper-parameters such as the kernel function, regularization parameter C, and the kernel 
coefficient “gamma”. 
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2.2 Bagging machine learning models 
Ensemble learning has become a notable concept in machine learning field recently. In this 
study, we focus on a type of ensemble learning methods, bagging. Bagging is a technique for 
creating multiple versions of a learning estimator and using these to obtain an aggregated 
estimator [27]. Each estimator version is trained on a random subset of the original training set, 
and then all individual predictions of the estimator versions are aggregated to obtain a final 
prediction. Thus, bagging is commonly used to reduce variance of a base learning estimator 
like the DT, MLP, or SVM one. Regularly, bagging is a simple way to improve the stability of 
a single learning model, without adapting the base algorithm of the model. Some advantages 
of bagging are reducing over-fitting and variance, and working well with strong complex 
learning models; though loss of interpretability and expensive computation are its challenges. 
Moreover, with regard to the training phase, bagging requires tuning a numbers of 
hyper-parameters such as the number of base estimators, and the number of observations in a 
random subset used to train an estimator version. In Section 3, we provide a new improved 
version of the bagging technique that utilizes Kalman filter-based averaging rather than the 
classical averaging method. 

2.3 Traditional Kalman filter-based ensemble of single machine learning 
models 
In this section, we introduce another kind of ensemble learning methods, a Kalman 
filter-based ensemble of single machine learning models (KESLM). Several previous works 
proposed a Kalman filter-based ensemble to fuse predictions from multiple machine learning 
models [11] [12]. The results showed that the filtering of model predictions can reduce the 
prediction error. These studies applied a discrete linear Kalman filter which is a recursive 
method for estimating the state of a process. It comprises two stages: a predict stage and an 
update stage. The predict stage determines the state estimate over time, and the update stage 
improves the state estimate with the observations. Although there are several important 
parameters in a Kalman filter construction, we note that the observation noise covariance is set 
to mean squared error values from the learning models. 

Similar to other ensemble methods, a KESLM also consists of two main steps: firstly 
creating individual members of the ensemble, and secondly fusing the outputs of the ensemble 
members. In the first step, the KESLM should use diverse learning models to improve the 
generalization of the ensemble. In this study, we used three types of learning modes in the 
KESLM: MLP, DT, and SVM. For the second step, the KESLM applies the Kalman filter to 
combine the outputs of all ensemble members. In comparison to traditional average methods 
such as weighted mean or median, the Kalman filter-based averaging can provide smoother 
estimations over time [11].  

2.4 Performance metrics 
Considering we applied the Kalman filter-based ensembles, mean squared error (MSE) is a 
proper measure to evaluate the performance of our and other approaches since it is also used in 
the observation noise covariance of the Kalman filters. The following presents the MSE 
formulation in RUL prediction tasks: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
��𝑅𝑅𝑈𝑈�𝐿𝐿𝑖𝑖 − 𝑅𝑅𝑈𝑈𝐿𝐿𝑖𝑖�

2
𝑛𝑛

𝑖𝑖=1

 (1) 

where 𝑅𝑅𝑈𝑈�𝐿𝐿𝑖𝑖 and 𝑅𝑅𝑈𝑈𝐿𝐿𝑖𝑖 are the predicted and the actual RUL values of the 𝑖𝑖-th observation 
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among a total of 𝑛𝑛 observations, respectively. 

2.5 CVGS, a cross-validated grid-search 
Firstly, we introduce the cross-validation (CV) technique which is widely used in machine 
learning fields. The most popular type of CV is 𝑘𝑘-fold CV, in which the training data is split 
into 𝑘𝑘 smaller subsets or 𝑘𝑘 “folds”. For each fold, the learning model is trained using 𝑘𝑘 – 1 
other folds, and the resulting model is validated on the current fold. Thus, a performance score 
is returned for each fold. The average of all performance scores is called CV score, and it is 
used to evaluate the performance of the learning model. In summary, CV is a technique that 
requires dividing the training data into multiple subsets, training the learning model multiple 
times, and using a different subset as the validation data for each time. This can improve the 
model’s performance and help to avoid over-fitting. 

To find optimal hyper-parameters of a learning model, many previous studies apply a 
cross-validated grid-search (CVGS) method on a training data [28] [29] [30]. Initially, the grid 
search specifies a list of values for each hyper-parameter that needs to be optimized, and then 
it creates all combinations of these values. For each combination of hyper-parameters values, 
the grid search calculates the CV score of the learning model on the training data based on the 
CV technique. The combination with the best CV score is selected for the learning model. 
Briefly, CVGS exhaustively explores the entire search space by trying all possible 
combinations of hyper-parameters. Thus, CVGS is a time-consuming process in case the 
number of involved hyper-parameters combinations is large or the learning model is complex. 
However, it is guaranteed to obtain the optimal combination of hyper-parameters. 

3. Proposed methods 
In this section, we firstly propose a new noise injection method to insert Gaussian noises into 
an original dataset. Secondly, we develop a new ensemble method by combining Kalman 
filters and bagging methods. Finally, we propose a novel RUL prediction approach by using 
the above methods.  

3.1 GN-DAFC, a Gaussian noise-based Data augmentation and Feature 
construction 
We develop a new method to insert Gaussian noises into two spaces of an original dataset: 
observation space and feature space, named GN-DAFC. This method corresponds to a simple 
utilization of noise in data augmentation and feature construction methods. As shown in Fig. 1, 
the procedure of GN-DAFC consists of two continuous stages: noisy observations insertion 
(data augmentation), and then noisy features insertion (feature construction). Given an original 
dataset of 𝑚𝑚 input features 𝐷𝐷 = [𝑓𝑓1,𝑓𝑓2,⋯ ,𝑓𝑓𝑚𝑚], where 𝑓𝑓𝑘𝑘 is the 𝑘𝑘-th input feature (1 ≤ 𝑘𝑘 ≤
𝑚𝑚). We also assume that 𝐷𝐷 contains 𝑛𝑛 observations [𝑜𝑜𝑜𝑜1,𝑜𝑜𝑜𝑜2,⋯ , 𝑜𝑜𝑜𝑜𝑛𝑛]. The following is the 
details of the GN-DAFC method:  

In the first stage, steps are conducted in the following order: 
- Firstly, a noisy dataset (named 𝑁𝑁𝐷𝐷 ) of same size with the original dataset 𝐷𝐷  is 

generated by adding random Gaussian noise in each feature of 𝐷𝐷 . Equation (2) 
describes the process of creating a new noisy feature 𝑓𝑓𝑘𝑘�  from the original one 𝑓𝑓𝑘𝑘, as 
follows: 

𝑓𝑓𝑘𝑘� = 𝑓𝑓𝑘𝑘 +  Ν(0, ( ( 𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑘𝑘)  −  𝑚𝑚𝑖𝑖𝑛𝑛(𝑓𝑓𝑘𝑘) ) × 𝐼𝐼𝑘𝑘  )2) (2) 
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where: 
o 𝑁𝑁(. ) is a random variable which is distributed normally with zero mean and 

standard deviation �𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑘𝑘)  −  𝑚𝑚𝑖𝑖𝑛𝑛(𝑓𝑓𝑘𝑘)� × 𝐼𝐼𝑘𝑘.  
o 𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑘𝑘) and 𝑚𝑚𝑖𝑖𝑛𝑛(𝑓𝑓𝑘𝑘) functions return the maximum and minimum values 

of the original feature 𝑓𝑓𝑘𝑘, respectively. 
o 𝐼𝐼𝑘𝑘 is the intensity of additive Gaussian noise for the feature 𝑓𝑓𝑘𝑘. 

 
Based on the above formulation, the values of noisy features are generated through the 
addition of Gaussian noise into corresponding original features. To control the amount 
of spread or noise intensity, the standard deviation of the random Gaussian noise can 
be adapted based on the scale of each input feature. In addition, we skip the cases of 
the original feature 𝑓𝑓𝑘𝑘 with constant value. Consequently, the noisy dataset 𝑁𝑁𝐷𝐷 also 

Fig. 1. Overview of the Gaussian noise-based Data augmentation and Feature construction, 
GN-DAFC. The procedure consists of two continuous stages: noisy observations insertion (data 

augmentation), and then noisy features insertion (feature construction). In our work, we specify 𝑝𝑝 ∈
{ 0.1𝑛𝑛, 0.3𝑛𝑛, 0.5𝑛𝑛 } and 𝑞𝑞 ∈ { 0.3𝑚𝑚, 0.7𝑚𝑚 } (𝑚𝑚 & 𝑛𝑛 are the numbers of features/observations in the 

original dataset 𝐷𝐷). 
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has 𝑚𝑚 input features 𝑁𝑁𝐷𝐷 = �𝑓𝑓1� ,𝑓𝑓2� ,⋯ ,𝑓𝑓𝑚𝑚��. Furthermore, the noise intensity 𝐼𝐼𝑘𝑘 of each 
feature 𝑓𝑓𝑘𝑘 is randomly determined by specifying a noise intensity range as follows: 

𝐼𝐼𝑘𝑘 =
𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟(𝑙𝑙𝑜𝑜𝑙𝑙_𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ,𝑢𝑢𝑝𝑝_𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ)

100
 (3) 

where: 
o 𝑟𝑟𝑚𝑚𝑛𝑛𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟(𝑙𝑙𝑜𝑜𝑙𝑙_𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ, 𝑢𝑢𝑝𝑝_𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ)  function returns a random integer in 

range [𝑙𝑙𝑜𝑜𝑙𝑙_𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ,𝑢𝑢𝑝𝑝_𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ], including both end points.  
o 𝑙𝑙𝑜𝑜𝑙𝑙_𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ and 𝑢𝑢𝑝𝑝_𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ are lower and upper threshold values of noise 

intensity (in percentage). 
 
Based on (2) and (3), the optimal range of noise intensity [𝑙𝑙𝑜𝑜𝑙𝑙_𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ,𝑢𝑢𝑝𝑝_𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ] is 
an important parameter of the first stage in the GN-DAFC procedure. In Section 3, our 
proposed approach conducts a grid-search to find this optimal noise intensity range.  
 

- Next, we randomly select 𝑝𝑝 noisy observations from the noisy dataset 𝑁𝑁𝐷𝐷, and then 
insert them into the original dataset 𝐷𝐷. As a result, the original dataset 𝐷𝐷 contains 𝑛𝑛 +
𝑝𝑝  observations �𝑜𝑜𝑜𝑜1, 𝑜𝑜𝑜𝑜2,⋯ , 𝑜𝑜𝑜𝑜𝑛𝑛,𝑛𝑛𝑜𝑜𝑜𝑜𝑟𝑟1 ,𝑛𝑛𝑜𝑜𝑜𝑜𝑟𝑟2 ,⋯ ,𝑛𝑛𝑜𝑜𝑜𝑜𝑟𝑟𝑝𝑝� , where 
𝑛𝑛𝑜𝑜𝑜𝑜𝑟𝑟1 ,𝑛𝑛𝑜𝑜𝑜𝑜𝑟𝑟2 ,⋯ ,𝑛𝑛𝑜𝑜𝑜𝑜𝑟𝑟𝑝𝑝 are the generated random noisy observations. The parameter 
𝑝𝑝 is also crucial in GN-DAFC though it denotes how large the ratio of inserted noisy 
observations over the original ones is. In our experiments, we choose 𝑝𝑝 values such 
that noisy observations take up 10%, 30%, or 50% of the number of original 
observations. 

 
In the second stage, GN-DAFC continuously inserts new noisy features into the 

noise-injected dataset 𝐷𝐷 as in the following steps. 
- Step 1, we randomly select a feature 𝑓𝑓𝑘𝑘�  of the fully noisy dataset 𝑁𝑁𝐷𝐷, and vertically 

merge it with a part of the feature 𝑓𝑓𝑘𝑘 of  the noise-injected dataset 𝐷𝐷. Accordingly, a 
new noisy feature 𝑓𝑓𝑘𝑘�  is generated based on the following formulation: 

𝑓𝑓𝑘𝑘� = 𝑓𝑓𝑘𝑘�⨁𝑓𝑓𝑘𝑘[𝑛𝑛 + 1,𝑛𝑛 + 𝑝𝑝] (4) 

where ⨁ denotes the vertical merge operation, 𝑓𝑓𝑘𝑘[𝑛𝑛 + 1,𝑛𝑛 + 𝑝𝑝] is a part of the feature 
𝑓𝑓𝑘𝑘 from 〈𝑛𝑛 + 1〉-th observation to 〈𝑛𝑛 + 𝑝𝑝〉-th one in the noise-injected dataset 𝐷𝐷. Then 
we append the new noisy feature 𝑓𝑓𝑘𝑘�  into the dataset 𝐷𝐷. 

- Step 2, move to Step 1 again until the number of newly generated noisy features is 
equal to 𝑞𝑞 . The parameter 𝑞𝑞  play an important role in the GN-DAFC procedure 
though it represents how large the ratio of noisy inserted features over the original 
ones is. In our experiments, we choose 𝑞𝑞 values such that the number of inserted noisy 
features takes up 30% or 70% of the number of original ones.  

  
In summary, two stages of the GN-DAFC procedure are clearly summarized Fig. 1. The 

RUL prediction performance is not only impacted by the quality of a learning model, but also 
the inputs of the learning model. Inspired of that, GN-DAFC utilizes Gaussian noise to expand 
the size of the original training dataset in both observation and feature spaces. This is also the 
main difference from most of existing noise utilization approaches that inject noise only in the 
observation space of the training data [19] [20] [21] [22] [23]. By repeating the procedure 
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GN-DAFC, many different noisy datasets can be generated based on the original dataset. Thus, 
it is an effective and convenient way to increase the generalization of a learning approach. We 
also need to properly adjust the intensity of noise for each input feature, and the ratio of 
inserted noisy observations/features. Too weak noise intensity or small ratio of inserted noisy 
data has no influence on the learning model, whereas too strong noise intensity or large ratio of 
inserted noisy data makes the learning model too challenging to train.  

3.2 DKBAG, a Kalman filter-based ensemble of modified bagging estimators  
In this section, we firstly propose a new improved version of the bagging technique, named 
KBAG, in which utilizes Kalman filter-based averaging method than the classical averaging 
one. Similar to a traditional bagging, KBAG also generates random subsets of an initial dataset 
by implementing a resampling with replacement strategy. This resampling strategy allows a 
given observation to be included in a given subset more than once. These random subsets are 
called bootstrap samples, and these samples have same number of observations or equal size. 
Each bootstrap sample is then inputted to a single learning estimator for training. The 
procedure of KBAG can be summarized in the following steps: 

- Choose a kind of single learning models to be employed in the bagging, such as MLP, 
SVM, or DT. 

- Choose a number of base estimators constructed from the selected single learning 
model, denoted as 𝐿𝐿. It is also equivalent to the number of bootstrap samples. 

- For each base estimator, we generate a bootstrap sample and then input it to the 
estimator for training. As a result, we have 𝐿𝐿 independent trained estimators to make 
predictions. 

- The predictions from all base estimators are aggregated into a single prediction by 
using the Kalman filter. This is the major difference of KBAG compared to a 
traditional bagging. 
 

Fig. 2a shows the overall flow chart of KBAG. We denote KBAG with the single learning 
model MLP, SVM, or DT as KBAG-MLP, KBAG-SVM, or KBAG-DT, respectively. 
Moreover, with regard to the training phase, KBAG requires tuning a numbers of 
hyper-parameters such as the number of base estimators, and the bootstrap sample size. In our 
experiments, we used a small number of bootstrap samples or base estimators (𝐿𝐿 ∈ {5,  10}) in 
order to reduce the training time. And each bootstrap sample 𝑀𝑀𝑖𝑖 (𝑖𝑖 ∈ [1, 𝐿𝐿]) has the size equal 
to 25%, 50%, or 100% of the training data size. 

Based on KBAG, we further develop a new Kalman filter-based ensemble, named DKBAG, 
in which a Kalman filter-based ensemble of KBAG estimators is constructed. The overall flow 
chart of DKBAG is illustrated in Fig. 2b. The Kalman filters are employed in both two layers 
of DKBAG: one inside each KBAG, and the final one outside all KBAG estimators. This 
architecture of DKBAG could increase the efficiency of Kalman filters in reducing the 
prediction error due to the double-stage filtering of predicted outputs. Each inner Kalman filter 
of a KBAG is used to smoothly fuse predictions from the base estimators. Then the outer 
Kalman filter would again aggregate predictions from all KBAGs into a final prediction. In 
addition, for each KBAG estimator, we use a 5-fold cross-validated grid-search to find its 
optimal hyper-parameters such as the number of base estimators 𝐿𝐿, and the bootstrap sample 
size. Our proposed DKBAG is similar to KESLM - the Kalman filter-based ensemble of single 
machine learning models (see Section 2.3 for details). The main difference is that DKBAG 
employs KBAG estimators as ensemble members whereas KESLM uses single learning 
estimators. 
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3.3 GN-DAFC-DKBAG, our proposed approach of combining optimal noise 
injection and DKBAG 
In this section, we utilize the above proposed methods GN-DAFC and DKBAG to further 
develop a novel approach for RUL predictions, named GN-DAFC-DKBAG. The new 
approach comprises a noise adjustment scheme along with DKBAG. The framework of our 
proposed approach is illustrated in Fig. 3. Our approach is conducted in two continuous phases: 
the noise adjustment phase and the training/testing phase. In the first phase, an 
GN-DAFC-based exhaustive searching strategy is employed to find optimal Gaussian 
noise-related parameters such as the range of noise intensity [𝑙𝑙𝑜𝑜𝑙𝑙_𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ,𝑢𝑢𝑝𝑝_𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ] and 
the number of inserted noisy observations/features -  𝑝𝑝 and 𝑞𝑞, respectively. This searching 
strategy is similar to the cross-validated grid-search (CVGS) introduced in Section 2.5, and is 
made up of the following steps: 

- Create all possible combinations of noise-related parameters values, and iterate over 
the combinations to compute their prediction performance. 

- Each combination 𝑛𝑛𝑛𝑛 along with the training data is inputted into the GN-DAFC 
method to generate a corresponding noise-injected data. Then the noise-injected data 
is used in a CVGS strategy to obtain a CV score for a simple DKBAG of only three 
learning models – KBAG-MLP, KBAG-SVM, and KBAG-DT. 

Fig. 2. Overall flow chart of the (a) Kalman filter-based Bagging model (KBAG) and (b) a Kalman 
filter-based ensemble of KBAGs (DKBAG). In (a), we employ base estimators by using only MLP, 

SVM, or DT. |𝑀𝑀𝑖𝑖| is the proportion of the subset or bootstrap sample 𝑖𝑖 in the training data (𝑖𝑖 ∈
[1, 𝐿𝐿]). In (b), we conduct a simple DKBAG of only three learning models: KBAG-MLP, 

KBAG-SVM, and KBAG-DT. 
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- After finish iterating all combinations, the best combination 𝑛𝑛𝑛𝑛𝑏𝑏 is selected 
corresponding to the best CV score.  

Though other previous studies have not provided a specific strategy to select optimal 
noise-related parameters [19] [20] [21] [22] [23]. The GN-DAFC-based searching strategy of 

Fig. 3. Overall framework of our approach, GN-DAFC-DKBAG. The approach comprises two 
continuous phases: the noise adjustment phase and the training/testing phase. 
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optimal noise-injected data is the main novel point in our approach, and it also plays a crucial 
role in the prediction performance of the approach.  

As shown in Fig. 3, we apply five ranges of noise intensity for the GN-DAFC-based 
searching strategy. The ratio of inserted noisy observations is equal to 10%, 30%, or 50% of 
the training observations size. The ratio of added noisy features is equal to 30% or 70% of the 
number of features in the training data. In this work, we only specify a small number of ratios 
to reduce the searching time. 

In the second phase, the best combination 𝑛𝑛𝑛𝑛𝑏𝑏 along with the training data is again inputted 
into the GN-DAFC method to generate an optimal noise-injected training data. The optimal 
noise-injected data is used to train the simple DKBAG, and then a trained DKBAG estimator 
is obtained for predicting test data later. The DKBAG method used in both two phases also 
takes an important role in our approach due to the strong reduction of prediction error induced 
by the two layers of Kalman filters inside it.  

4. Results 
To evaluate our proposed approach, we compared it to the traditional Kalman filter-based 
ensemble of single learning models (KESLM), DKBAG with only original training data 
(original DKBAG), and also two previous advanced ensemble learning approaches over the 
NASA C-MAPSS benchmark dataset. The experiments have been conducted on a personal 
computer with Intel® Core™ i3 CPU@2.00GHz, 4.00 GB RAM, and Windows 10. To 
implement the experiments, the programming language used was Python 3.11.3, together with 
some additional libraries such as scikit-learn, numpy, filterpy, and so on.   

4.1 The NASA C-MAPSS dataset 
In this study, our proposed approach is validated on the degradation dataset of the aircraft 
turbofan engine, which is generated by using a commercial modular aero-propulsion system 
simulation (C-MAPSS) [31]. The dataset is split into four sub-datasets, as illustrated in Table 
1. Each sub-dataset is further divided into the training and testing sets, in which consists of a 
number of trajectories. Each trajectory is a multivariate time series or the life-cycles of an 
aircraft engine. All engines function in normal condition at the beginning, and then start to 
degrade over time. Moreover, the training sets include the full degradation to the end of the 
engines, whereas the testing sets only contain the partial degradation of engines. Our challenge 
is to estimate the accurate RUL value for each engine in the testing sets. 

Each dataset is organized as an 𝑁𝑁-by-26 matrix where 𝑁𝑁 denotes the number of data points 
or observations in the dataset. Each row is a single operational cycle and each column means 
an input feature. The dataset has 26 different features: identity of the engine, time step (in 
cycles), three operational conditions, and 21 sensor measurements. The three input features of 
operational conditions define the operational mode of an engine. There exist six operational 
modes that significantly affect the engine execution in FD002 and FD004 sub-datasets, though 

 
Table 1. The NASA C-MAPSS dataset of turbofan engines 

Description FD001 FD002 FD003 FD004 
No. of Training trajectories 100 260 100 249 
No. of Testing trajectories 100 259 100 248 
No. of operational modes 1 6 1 6 
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only a single operational mode exists in FD001 and FD003 sub-datasets [11]. Therefore, the 
operational mode is used to create additional six input features defining the number of cycles 
executed in their respective operational mode from the starting of the time series [11]. 
Moreover, all input features were normalized based on the operational modes as in [11]. We 
also remove the input features containing only one constant value. As a result, only 17, 18 
input features are remained in FD001 and FD003 sub-datasets, respectively. And all input 
features are retained in FD002 and FD004 sub-datasets. 

4.2 Experiments setup 
In this section, we present the experimental setup for the RUL prediction of our proposed 
approach (GN-DAFC-DKBAG) and three other introduced ensemble approaches such as 
KESLM with original training data (named as “original KESLM”), KESLM combined with 
GN-DAFC (named as GN-DAFC-KESLM), and DKBAG with original training data (named 
as “original DKBAG”). The GN-DAFC-KESLM approach has similar architecture to our 
approach GN-DAFC-DKBAG; although, the former employs a simple KESLM model 
(consisting of three single learning models MLP, DT, and SVM) whereas the latter employs a 
simple DKBAG model (consisting of three KBAG models KBAG-MLP, KBAG-SVM, and 
KBAG-DT). We apply a number of 5-fold cross-validated grid-searches to find optimal 
hyper-parameters values of KESLM and DKBAG models in these approaches. Lists of 
hyper-parameters values are specified in Table 2. Detail explanations of hyper-parameters are 
presented as follows: 

- MLP: We simply apply the MLP model with only one single hidden layer to reduce 
the training time. The solver for weight optimization is determined between an 
optimization algorithm in the group of quasi-Newton methods – the Limited-memory 
Broyden-Fletcher-Goldfarb-Shanno algorithm (“lbfgs”) [32] and a stochastic 
gradient-based optimizer (“adam”) [33]. The activation function type is also selected 
between the hyperbolic tangent function (“tanh”) and the rectified linear unit function 
(“relu”).  

- SVM: The penalty parameter 𝐶𝐶 is used to specify the degree of the acceptance of 
incorrect predictions in the training data. 

- DT: The maximum depth of a decision tree is a stopping condition that limits the 
number of splits that can be conducted in the tree. 

- KBAG: The number of bootstrap samples or base estimators is only selected between 
5 and 10 values in order to reduce the training time. The number of observations to 
draw from the training data to train each base estimator (size of each bootstrap sample) 
is equal to 25%, 50%, or 100% of the training data size. 

 
 

Table 2. Lists of hyper-parameters values used in KESLM/DKBAG-related approaches 
Related approach Model Hyper-parameter List of values 

original KESLM & 
GN-DAFC-KESLM 

MLP 
No. of neurons in the hidden layer { 5, 10, 15, 20 } 

Type of weight optimization method { 𝑚𝑚𝑟𝑟𝑚𝑚𝑚𝑚, 𝑙𝑙𝑜𝑜𝑓𝑓𝑙𝑙𝑟𝑟 } 
Type of activation function { 𝑟𝑟𝑟𝑟𝑙𝑙𝑢𝑢, 𝑟𝑟𝑚𝑚𝑛𝑛ℎ } 

SVM Penalty parameter 𝐶𝐶 {1, 2, 4, 8, 16, 32} 
DT Maximum depth of the tree [1 − 10] 

original DKBAG & 
GN-DAFC-DKBAG KBAG 

No. of bootstrap samples {5, 10} 
Size of each bootstrap sample {25%, 50%, 100%} 



3256                                                                Trinh et al.: Remaining Useful Life Estimation based on Noise Injection and 
a Kalman Filter Ensemble of modified Bagging Predictors 

 
Table 3. Lists of Gaussian noise-related parameters values used in GN-DAFC-KESLM and 

GN-DAFC-DKBAG approaches 
Parameter List of values 

Range of noise intensity  { [1, 5], [6, 10], [11, 15], [16, 20], [21, 25] } 
Ratio of inserted noisy observations 𝑝𝑝 { 10%, 30%, 50% } 

Ratio of inserted noisy features 𝑞𝑞 { 30%, 70% } 
 

In addition to these above hyper-parameters, GN-DAFC-KESLM and 
GN-DAFC-DKBAG approaches also need to find the optimal Gaussian noise-related 
parameters values as in the noise adjustment phase. Table 3 summarizes lists of the 
noise-related parameters values. We apply five ranges of noise intensity for GN-DAFC 
method. The ratio of inserted noisy observations is equal to 10%, 30%, or 50% of the training 
observations size. The ratio of inserted noisy features is equal to 30% or 70% of the number of 
features in the training data. We only specify a small number of ratios to reduce the searching 
time. 

4.3 Performance comparisons between GN-DAFC-DKBAG and other ensemble 
approaches 
Based on the setup of the previous section, we compare the RUL prediction performance of 
our proposed approach (GN-DAFC-DKBAG) to the other three introduced ensemble 
approaches such as original KESLM, GN-DAFC-KESLM, and original DKBAG. All 
following experiments were executed over 50 trials to achieve general and reliable results. 
Firstly, the correlation between the training and test performance of GN-DAFC-DKBAG and 
other three approaches is investigated (Fig. 4). For all datasets, results of the approaches did 
not showed positive correlations between training MSE and test MSE values. It means that a 
better approach in the training dataset does not ensure a better performance over the test 
dataset. Remarkably, our approach (GN-DAFC-DKBAG) has the best performance over all 
the test datasets, while it was not best over all the training datasets. We further plot the average 
and the standard deviation of the MSE values in all the test datasets (Fig. 5). As illustrated in 
the figure, the GN-DAFC-DKBAG approach obtained significantly better RUL predictions 
than the other three approaches in all the test datasets (all p-values < 0.0001). The 
GN-DAFC-KESLM approach yielded obviously better results in comparison with the original 
KESLM (all p-values < 0.0001) and similar RUL prediction performance to the original 
DKBAG approach in all the test datasets. In these cases, the effect of optimal noise injection is 
clearly observed. It also turns out that the optimal noise-injected dataset obtained from the 
GN-DAFC method can improve the prediction performance of both the ensemble of single  
learning models (KESLM) and the ensemble of bagging models (DKBAG). We also found 
that the original DKBAG approach achieved significantly better results than the original 
KESLM one in all the test datasets (all p-values < 0.0001); though, the optimal noise-injected 
dataset used in the training phase could help the original KESLM approach to gain similar 
prediction performance with the original DKBAG one. Thus, the GN-DAFC-based searching 
strategy of optimal noise-injected data could be used in a more flexible way for learning model 
selections. Furthermore, we examined the best combinations of noise-related parameters 
values found by GN-DAFC-KESLM and GN-DAFC-DKBAG approaches (Table 4), and 
observed that they are varied across the given approaches and datasets. The corresponding best 
CV score of each best combination is also presented in the table. The largest range of noise 
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Fig. 4. Correlation between the training and test performance by GN-DAFC-DKBAG and other 
three approaches. (a-d) Results in FD001, FD002, FD003, and FD004 datasets, respectively. There 

are no positive correlations between training MSE and test MSE values in all datasets. 
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Fig. 5. Performance comparison of GN-DAFC-DKBAG and other three approaches. (a-d) Results 
in FD001, FD002, FD003, and FD004 datasets, respectively. GN-DAFC-DKBAG obtains the best 

RUL predictions,  GN-DAFC-KESLM and original DKBAG have similar performance, and 
original KESLM is the worst in all the test datasets (all p-values < 0.0001).  

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 12, December 2023                         3259 

intensity [21, 25] does not exist in all the best combinations, and only three of eight best 
combinations include the second largest range of noise intensity [16, 20]. The largest ratio of 
inserted noisy observations “50%” occurs in only one best combination, and the largest ratio 
of inserted noisy features “70%” exists in three of eight best combinations. These cases mean 
that it is very difficult to train a learning model based on a dataset of too strong noise intensity 
or large ratio of inserted noisy observations/features. Similarly, we also found that the smallest 
range of noise intensity [1, 5] exists in only three of eight best combinations. The small and 
medium ratios of inserted noisy observations (10%, 30%) are almost equally distributed in 
most of best combinations (seven of eight); and the smallest ratio of inserted noisy features 
“30%” also exists in most of best combinations (five of eight). It turns out that too weak noise 
intensity has little influence on a learning model; though a small or medium ratio of inserted 
noisy observations/features still strongly affect the learning model. The CV score is the 
negation of the average of MSE values obtained from all validation folds in the 5-fold 
cross-validation. These CV scores obviously have large variability due to the difficulty in 
training on a noise-injected dataset. The investigation in Table 4 could help us intensely 
understand the effects of noise intensity/quantity on a learning model. In summary, the 
GN-DAFC-KESLM and GN-DAFC-DKBAG approaches have competently explored a 
variety of noise-related parameters’ combinations to achieve the optimal noise-injected 
dataset for further training a RUL prediction model. 

In order to show the applicability of our proposed approach in real systems, we analyzed 
the running time of all approaches on our system as mentioned above. We note that the 
running time is measured for all phases in an approach (data preprocessing, finding the best 
noise-related parameters’ combinations if required, training, testing). As expected, the running 
time of the original KESLM/DKBAG approaches is very short in comparison to that of the 
GN-DAFC-KESLM and GN-DAFC-DKBAG ones (Fig. 6). It dues to the phase of searching 
optimal noise-injected training dataset in these approaches is time consuming. The noisy 
expansion in both the observation and feature spaces of the training dataset also requires a 
longer training time. However, the running time of our GN-DAFC-DKBAG approach is still 
in a practical way considering the enhancement of RUL prediction performance.  

Finally, we further compared our proposed approach with two previous advanced ensemble 
approaches: a heuristic Kalman filter ensemble [11] and an ensemble of genetic algorithms 
[12]. In [11], a Kalman filter-based ensemble of multiple neural network models along with a 
heuristic ensemble selection was proposed to predict RUL. The heuristic ensemble selection 
aims to find a good subset of learning models in a proper running time. It reduces the search 
space while still provides a broad search path. We also conducted this heuristic Kalman filter 
ensemble on the NASA C-MAPSS dataset. In [12], the authors proposed a Kalman 
filter-based ensemble of multiple optimal learning models obtained from genetic algorithm 
searches. This previous study already investigated the NASA C-MAPSS dataset. As shown in 
Table 5, our approach achieves better performance than the two previous ensemble ones. In 
summary, our approach of combining optimal noise-injected data and DKBAG could be 
considered as a potential solution for RUL estimation of machinery systems. 

5. Discussions 
Latest advances in artificial intelligence and computational methods help us analyze and 
predict operations of machinery systems. Many data-driven prognostics approaches have been 
developed and achieved good improvement in health-state/RUL estimation of various systems, 
such as lithium-ion battery systems [34] [35] [36] [37] [38], supercapacitors [39] [40] [41], 
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turbofan engines [6] [7] [9]. In this work, we proposed a novel RUL prediction approach of 
combining optimal noise injection and Kalman filters-based bagging. Firstly, we developed 
GN-DAFC, a new procedure to inject Gaussian noises into both observation and feature 
spaces of an original dataset. Secondly, we proposed KBAG, an improved version of the 
bagging method based on Kalman filter averaging. The improvement is that KBAG utilizes a 
Kalman filter-based averaging method rather than a classical averaging one. Thirdly, we 
further developed DKBAG, a Kalman filter ensemble of KBAGs. Finally, we proposed 
GN-DAFC-DKBAG, a novel RUL prediction approach that combines optimal noise-injected 
training data with DKBAG. 

 
Table 4. Best combinations of Gaussian noise-related parameters values used in GN-DAFC-KESLM 

and GN-DAFC-DKBAG approaches 

Dataset Approach 
Range of 

noise 
intensity 

Ratio of 
inserted noisy 
observations 𝒑𝒑 

Ratio of 
inserted noisy 

features 𝒒𝒒 

Absolute 
cross-validation 

score 
( 𝝁𝝁 ± 𝝈𝝈 ) 

FD001 
GN-DAFC-KESLM [11, 15] 10% 70% 1536.41 ± 318.67 
GN-DAFC-DKBAG [11, 15] 10% 30% 1568.29 ± 299.28 

FD002 
GN-DAFC-KESLM [1, 5] 30% 70% 2374.84 ± 151.68 
GN-DAFC-DKBAG [16, 20] 30% 30% 2724.17 ± 354.29 

FD003 
GN-DAFC-KESLM [1, 5] 10% 30% 5392.35 ± 819.69 
GN-DAFC-DKBAG [16, 20] 30% 30% 6460.89 ± 1148.29 

FD004 
GN-DAFC-KESLM [16, 20] 50% 30% 3974.94 ± 458.80 
GN-DAFC-DKBAG [1, 5] 10% 70% 6172.86 ± 546.85 

 
Table 5. Performance comparison of our approach GN-DAFC-DKBAG with two other advanced 

ensemble approaches on the NASA C-MAPSS dataset 

Approach 
Test MSE ( 𝝁𝝁 ± 𝝈𝝈 ) 

FD001 FD002 FD003 FD004 
a heuristic Kalman 
filter ensemble [11] 1062.86 ± 81.89 1150.54 ± 58.94 1352.16 ± 152.88 1413.13 ± 54.61 

an ensemble of genetic 
algorithms [12] 818.36 ± 132.64 1111.05 ± 39.51 1152.99 ± 114.87 1198.07 ± 133.35 

GN-DAFC-DKBAG 813.30 ± 25.54 797.54 ± 9.31 925.33 ± 101.50 1151.70 ± 64.83 
 

GN-DAFC could be considered as a structural combination of data augmentation and 
feature construction methods. The main difference of GN-DAFC with existing noise injection 
approaches is that the existing ones insert noise only in the observation space of the training 
data or focus only in the data augmentation/modification [19] [20] [21] [22] [23]. By repeating 
the procedure GN-DAFC, different noisy datasets can be generated based on the original 
dataset. Thus, it is an effective and convenient way to increase the generalization of a learning 
approach. GN-DAFC plays an essential role in our proposed RUL prediction approach - 
GN-DAFC-DKBAG. The GN-DAFC-based searching strategy of optimal noise-injected 
training data is the crucial point of GN-DAFC-DKBAG. The searching strategy would decide 
the prediction performance of the followed DKBAG model. Effectiveness of the 
GN-DAFC-based searching strategy was proved in the Results section. As shown in Fig. 5, 
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GN-DAFC-DKBAG achieves the best RUL predictions, GN-DAFC-KESLM and original 
DKBAG have similar performance, and original KESLM is the worst in all the test datasets 
(all p-values < 0.0001). It means that the GN-DAFC-based searching strategy can enhance the 
prediction performance of both DKBAG and KESLM methods. 

Fig. 6. Running time comparison of GN-DAFC-DKBAG and other three approaches. (a-d) Results 
in FD001, FD002, FD003, and FD004 datasets, respectively. Our GN-DAFC-DKBAG approach 

has the longest running time, though it is still in a practical way. 
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Regarding DKBAG, the Kalman filters are employed in both two layers of DKBAG: one 
inside each KBAG, and the final one outside all KBAG estimators. This double-stage 
architecture of DKBAG could increase the efficiency of Kalman filters in reducing the 
prediction error due to the two continuous filtering of predicted outputs, and then could 
enhance the model performance and stability. DKBAG outperforms over the conventional 
methods as shown in the Results section. Fig. 5 showed that the original DKBAG has 
significantly better performance than the original KESLM (p-values < 0.0001), and the 
GN-DAFC-DKBAG also outperforms the GN-DAFC-KESLM (p-values < 0.0001).  

To provide deeper insights, we further investigated the best combinations of noise-related 
parameters values found by GN-DAFC-KESLM and GN-DAFC-DKBAG approaches as in 
Table 4. Results of this investigation showed that an appropriate medium noise intensity and 
small/medium ratio of inserted noisy observations/features could obviously improve a 
learning model. Finally, we compared our proposed approach with two previous advanced 
ensemble approaches: a heuristic Kalman filter ensemble and an ensemble of genetic 
algorithms. Experimental results also indicated that our proposed approach achieved better 
prediction performance than the two previous ensemble ones. 

6. Conclusion 
In contrast to most previous studies, we utilized noise injection to improve the RUL 

prediction performance of learning models. We firstly proposed GN-DAFC, which is a new 
noise injection method to insert Gaussian noise into both observation and feature spaces of an 
original training dataset. Secondly, we developed a new ensemble learning method by 
combining Kalman filters and bagging methods, named DKBAG. Finally, we proposed a new 
RUL prediction approach GN-DAFC-DKBAG in which the optimal noise-injected training 
dataset was determined by a GN-DAFC-based searching strategy and then inputted to the 
DKBAG model. GN-DAFC-DKBAG was also considered as a new noise-based data 
augmentation/feature construction approach, where it optimizes parameters of noise intensity 
and amount of inserted noisy observations/features. The effectiveness of GN-DAFC-DKBAG 
was then validated on the NASA C-MAPSS dataset. Our proposed approach outperforms the 
traditional approach using a Kalman filter-based ensemble of single learning models (KESLM) 
and also the original DKBAG. As shown in the results, the combination of optimal inserted 
noisy data and the Kalman filter-based bagging ensemble can improve the generalization 
performance of leaning models and avoid the over-fitting problem. The optimal noise-injected 
data can also enhance the prediction performance of the KESLM approach. These results 
suggest that the optimal noise-injected dataset can be utilized in a more flexible way for 
machine learning model selections. Moreover, a proper medium noise intensity and 
small/medium number of inserted noisy observations/features can significantly improve a 
learning model as observed in the found best combinations of noise-related parameters. 
Furthermore, our approach was also compared with two previous advanced ensemble 
approaches, and the results showed that our approach achieves better performance than the 
two previous ones. Despite the improved performance, a parallel and heuristic version of the 
GN-DAFC-DKBAG approach could be developed to reduce the running time. Other types of 
single or ensemble learning models can be employed in our approach for further investigations, 
such as long short-term memory neural network, boosting and stacking ensembles. Finally, 
various types of noise can be additionally examined in our approach such as uniform noise, 
impulsive noise, and exponential noise. 
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