• Title/Summary/Keyword: Relief Robot

Search Result 19, Processing Time 0.02 seconds

Development of Joint Controller and Collision Detection Methods for Series Elastic Manipulator of Relief Robot (구호로봇용 연성 매니퓰레이터를 위한 조인트 제어 및 충돌감지 알고리즘)

  • Jung, Byung-jin;Kim, Tae-Keun;Won, Geon;Kim, Dong Sup;Hwang, Junghun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.157-163
    • /
    • 2018
  • This paper deals with the development and application of control algorithms for series elastic relief robots for rescue operations in harsh environment like disasters or battlefield. The joint controller applied in this paper has a cascade structure combining inner loop for torque control and outer loop for position control. The torque loop contains feedforward and feedback controller and disturbance observer for independent, decentralized joint control. The effect of the elastic component and motor dynamics are treated as the nonlinear disturbance and compensated with the disturbance observer of torque controller. For the collision detection, Band Designed Disturbance Observer is configured to recognize/respond to external disturbance robustly in the continuously changing environment. The controller is applied to a 7-dof series elastic manipulator to evaluate the torque tracking and collision detection/response performance.

Design and Implementation of the ChamCham and WordChain Play Robot for Reduction of Symptoms of Depressive Disorder Patient (우울증 진단 환자의 증상 완화를 위한 참참참, 끝말잇기 놀이 로봇 설계 및 구현)

  • Eom, Hyun-Young;Seo, Dong-Yoon;Lee, Gyeong-Min;Lee, Seong-Ung;Choi, Ji-Hwan;Lee, Kang-Hee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.561-566
    • /
    • 2020
  • We propose to design and to implement a recreational and end - of - play robot for symptom relief in patients with depression. The main symptom of depression is the loss of interest and interest in life. The depression diagnosis patient confirms the emotional analysis revealed by his / her robot through the robot, and performs the greeting or ending play. After analyzing the emotions in the expressions after the play, the function of the embodying robot is confirmed by receiving the report. A simple play can not completely cure a patient with a diagnosis of depression, but it can contribute to symptom relief through gradual use. The design of the play-by-play robot is using Q.bo One, an open-source robot that can interact with Thecorpora. Q.bo One's system captures a user's face, takes a picture, passes the value to the Azure server, and checks the emotional analysis before and after the play with the accumulated data.Play is implemented in Rasubian, the OS of Q.bo One, using the programming language Python and interacting with external sensors. The purpose of this paper is to help the symptom relief of depressive patients in a relatively short time with a play robot.

Functional Testing of First-Aid Gadget Prototypes for Relief Robot (구호로봇을 위한 응급처치용 가젯 시제품의 기능 테스트 방안)

  • Lee, Jaeseong;Lee, Ikho;Park, Taesang;Jeong, Choongpyo;Kim, Hyeonjung;An, Jinung;Lee, Seonghun;Yun, Dongwon
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.164-173
    • /
    • 2018
  • This paper proposes functional test methods of first-aid gadgets which are special end-effectors, for relief robot. In recent years, researches have been actively conducted on robots that can perform rescue operations on behalf of rescue workers in dangerous areas such as disasters and wars. These special robots mainly perform the task of finding or transporting injured people. However, it is sometimes they necessary to provide first aid in the field. Among the various first-aid operations, gadgets are being developed for oxygen supply, injection, and hemostasis operations that can be used in a defense/civilian area by using robot technology. Previous studies have proposed first-aid gadgets that are suitable for onsite situations and enable robots to perform the given task quickly and accurately. In this paper, we design a test procedure suitable for the functions of first-aid gadgets, summarize the results, and introduce future research directions.

Development of a Rehabilitation Robot for Mckenzie Cervical Exercise (경부 맥킨지 운동용 재활로봇의 개발)

  • Shin, Sang-Hyo;Moon, Inhyuk
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.73-79
    • /
    • 2016
  • In this paper a cervical rehabilitation robot for Mckenzie exercises to be effective to neck pain relief is proposed. The robot has two degrees of freedom (DOF) for Lateral flexion and extension, Dorsal and Vental flexion which enable user to perform cervical stretching and isometric exercises for neck muscles. The mechanical parts of the cervical rehabilitation robot can be mounted on a back- or head-rest of chair, and user can perform the Mckenzie exercise with seated. In experiments we measured the range of motion of cervical part, EMG signals from neck muscles and the contact forces of a head bracket fixing the head part of user, and then evaluated their performances. From the experimental results, we showed a feasibility of the cervical rehabilitation robot proposed in this study.

Development of Content for the Robot that Relieves Depression in the Elderly Using Music Therapy (음악요법을 이용한 노인의 우울증 완화 로봇 'BOOGI'의 콘텐츠 개발)

  • Jung, Yu-Hwa;Jeong, Seong-Won
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.74-85
    • /
    • 2015
  • The positive effect of percussion instruments can induce increases in self-esteem and decreases in depression in the elderly. Based on this, the content for a percussion instrument robot that the elderly can use to play music is developed. The elements of the interaction between the elderly and the robot through the robot content are extracted. Music that arouses positive memories in the elderly is selected as part of the music therapy robot content in order to relieve depression, and a scoring system for playing music is constructed. In addition, the interaction components of the robot's facial expressions, which stimulate emotions and sensitivity in the elderly, are also designed. These components enable the elderly to take an active part in using the instrument to change the robot's facial expressions, which have three degrees of emotion: neutral-happy, happy, and very happy. The robot is not only a music game machine: it also maximizes the relief of depression in the elderly through interactions with the robot that allow the elderly person to listen to what the robot plays and through the elderly person becoming involved and playing music along with the robot.

A Parallel Implementation of Multiple Non-overlapping Cameras for Robot Pose Estimation

  • Ragab, Mohammad Ehab;Elkabbany, Ghada Farouk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4103-4117
    • /
    • 2014
  • Image processing and computer vision algorithms are gaining larger concern in a variety of application areas such as robotics and man-machine interaction. Vision allows the development of flexible, intelligent, and less intrusive approaches than most of the other sensor systems. In this work, we determine the location and orientation of a mobile robot which is crucial for performing its tasks. In order to be able to operate in real time there is a need to speed up different vision routines. Therefore, we present and evaluate a method for introducing parallelism into the multiple non-overlapping camera pose estimation algorithm proposed in [1]. In this algorithm the problem has been solved in real time using multiple non-overlapping cameras and the Extended Kalman Filter (EKF). Four cameras arranged in two back-to-back pairs are put on the platform of a moving robot. An important benefit of using multiple cameras for robot pose estimation is the capability of resolving vision uncertainties such as the bas-relief ambiguity. The proposed method is based on algorithmic skeletons for low, medium and high levels of parallelization. The analysis shows that the use of a multiprocessor system enhances the system performance by about 87%. In addition, the proposed design is scalable, which is necaccery in this application where the number of features changes repeatedly.

Study on 2.5D Map Building and Map Merging Method for Rescue Robot Navigation (재난 구조용 로봇의 자율주행을 위한 지도작성 및 2.5D 지도정합에 관한 연구)

  • Kim, Su Ho;Shim, Jae Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.114-130
    • /
    • 2022
  • The purpose of this study was to investigate the possibility of increasing the efficiency of disaster relief rescue operations through collaboration among multiple aerial and ground robots. The robots create 2.5D maps, which are merged into a 2.5D map. The 2.5D map can be handled by a low-specification controller of an aerial robot and is suitable for ground robot navigation. For localization of the aerial robot, a six-degree-of-freedom pose recognition method using VIO was applied. To build a 2.5D map, an image conversion technique was employed. In addition, to merge 2.5D maps, an image similarity calculation technique based on the features on a wall was used. Localization and navigation were performed using a ground robot to evaluate the reliability of the 2.5D map. As a result, it was possible to estimate the location with an average and standard error of less than 0.3 m for the place where the 2.5D map was normally built, and there were only four collisions for the obstacle with the smallest volume. Based on the 2.5D map building and map merging system for the aerial robot used in this study, it is expected that disaster response work efficiency can be improved by combining the advantages of heterogeneous robots.

A New Refinement Method for Structure from Stereo Motion (스테레오 연속 영상을 이용한 구조 복원의 정제)

  • 박성기;권인소
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.935-940
    • /
    • 2002
  • For robot navigation and visual reconstruction, structure from motion (SFM) is an active issue in computer vision community and its properties arc also becoming well understood. In this paper, when using stereo image sequence and direct method as a tool for SFM, we present a new method for overcoming bas-relief ambiguity. We first show that the direct methods, based on optical flow constraint equation, are also intrinsically exposed to such ambiguity although they introduce robust methods. Therefore, regarding the motion and depth estimation by the robust and direct method as approximated ones. we suggest a method that refines both stereo displacement and motion displacement with sub-pixel accuracy, which is the central process f3r improving its ambiguity. Experiments with real image sequences have been executed and we show that the proposed algorithm has improved the estimation accuracy.

Design and Implementation of Disaster Relief Robot with a Smartphone (스마트폰을 이용한 재난 구조 로봇의 설계 및 구현)

  • Park, Senog Joon;Youn, Hee Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.01a
    • /
    • pp.163-164
    • /
    • 2015
  • 최근 로봇 기술은 전자공학, 컴퓨터, 기계공학 등의 비약적인 발전에 힘입어 다양한 용도에 사용되고 있다. 특히 로봇은 극한 환경에서 인간이 실천하기 어려운 작업을 수행할 수가 있으며, 인간과 함께 운용되거나 인간이 로봇을 무선으로 제어하여 현장을 확인을 할 수 있으며 이를 통하여 화재진압 및 인명구조를 수행할 수 있다. 이 때 무선 제어 로봇은 탐사 시 동체가 전복되더라도 지속적인 탐사가 가능해야 한다. 따라서 로봇의 동체보다 바퀴를 크게 하여 동체가 전복해도 동작이 가능하도록 한다. 본 논문에서는 무선 조정 자동차를 사용 하여 차체의 전복에도 충분히 제어 및 탐사가 가능한지 실험하고, 초음파센서로 하여금 능동적으로 장애물 회피를 하는 것을 목적으로 한다.

  • PDF

Design of Safe Autonomous Navigation System for Deployable Bio-inspired Robot (전개형 생체모방로봇을 위한 안전한 자율주행시스템 설계)

  • Choi, Keun Ha;Han, Sang Kwon;Lee, Jinyi;Lee, Jin Woo;Ahn, Jung Do;Kim, Kyung-Soo;Kim, Soohyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.456-462
    • /
    • 2014
  • In this paper, we present a deployable bio-inspired robot called the Pillbot-light, which utilizes a safe autonomous navigation system. The Pillbot-light is mounted the station robot, and can be operated in a disaster relief operation or military operation. However, the Pilbot-light has a challenge to navigate autonomously because the Pilbot-light cannot be equipped with various sensors. As a result, we propose a new robot system for autonomous navigation that the station robot controls Pillbot-light equipped with vision camera and CPU of high performance. This system detects obstacles based on the edge extraction using vision camera. Also, it cannot only achieve path planning using the hazard cost function, but also localization using the Particle Filter. And this system is verified by simulation and experiment.