• 제목/요약/키워드: Reliability-based analysis

검색결과 4,334건 처리시간 0.033초

Reliability of joint angle during sit-to-stand movements in persons with stroke using portable gait analysis system based wearable sensors

  • An, Jung-Ae;Lee, Byoung-Hee
    • Physical Therapy Rehabilitation Science
    • /
    • 제8권3호
    • /
    • pp.146-151
    • /
    • 2019
  • Objective: The purpose of this study was to investigate the test-retest reliability and concurrent validity of the joint angle of the lower extremities during sit-to-stand movements with wearable sensors based on a portable gait analysis system (PGAS), and the results were compared with a analysis system (MAS) to predict the clinical potential of it. Design: Cross-sectional study. Methods: Sixteen persons with stroke (9 males, 7 females) participated in this study. All subjects had the MAS and designed PGS applied simultaneously and eight sensor units of designed PGAS were placed in a position to avoid overlap with the reflexive markers from MAS. The initial position of the subjects was 90º of hip, knee, and ankle joint flexion while sitting on a chair that was armless and backless. The height of the chair was adjusted to each individual. After each trial, the test administrator checked the quality of data from both systems that measured sit-to-stand for test-retest reliability and concurrent validity. Results: As a result, wearable sensor based designed PGAS and MAS demonstrated reasonable test-retest reliability for the assessment of joint angle in the lower extremities during sit-to-stand performance. The intra-class correlation coefficients (ICCs) for wearable sensor based designed PGAS showed an acceptable test-retest reliability, with ICCs ranging from 0.759 to 0.959. In contrast, the MAS showed good to excellent test-retest reliability, with ICCS ranging from 0.811 to 0.950. In concurrent validity, a significant positive relationship was observed between PGAS and MAS for variation of joint angle during sit-to-stand movements (p<0.01). A moderate to high relationship was found in the affected hip (r=0.665), unaffected hip (r=0.767), affected knee (r=0.876), unaffected knee (r=0.886), affected ankle (r=0.943) and unaffected ankle (r=0.823) respectively. Conclusions: The results of this study indicated that wearable sensor based designed PGAS showed acceptable test-retest reliability and concurrent validity in persons with stroke for sit-to-stand movements and wearable sensors based on developed PGAS may be a useful tool for clinical assessment of functional movement.

무기체계 정비 데이터를 활용한 품질 개선 프로세스 개발 (Development of Quality Improvement Process based on the Maintenance Data of Weapon Systems)

  • 김헌길;권세민;조경호;성시일
    • 품질경영학회지
    • /
    • 제43권4호
    • /
    • pp.499-510
    • /
    • 2015
  • Purpose: This paper treats the improvement of the quality and reliability of military weapon systems based on the maintenance data. Methods: The proposed method of the data integration and refinement are used to obtain the component reliability information and to find the frequently failed components based on the Pareto analysis. Based on the reliability information and the number of failed component frequencies, the target components of quality improvement are determined and improved by multiple methods such as engineering changes, special meetings, additional training and revising maintenance manuals. Results: Based on the proposed process, we find some components which need to be improved in order to enhance the quality and reliability. Conclusion: A process is developed for improving the quality and reliability of weapon systems. This process will be adopted by various weapon systems to enhance the quality and reliability, as well as reduce military spending.

LCC분석에 있어서 신뢰성기법 활용에 관한 연구 (A Study on the reliability method development for the LCC analysis)

  • 이종범;조상훈;민병찬;홍두영;이원주
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.319-328
    • /
    • 2011
  • The failure of LCC analysis is recognized as a serious risk for companies in fast-paced business environment. LCC analysis has been mentioned and analyzed only in accounting perspectives, but recently engineering perspectives of LCC analysis based on the execution of appropriate procedures become more important than the accounting perspectives. Especially, the practical use of reliability engineering related methodologies is recognized as a key factor for the LCC analysis. For the practical use of reliability methods, LCC analysis for unexposed problems is a key issue, and utilizing FMEA and FTA techniques is needed to solve the unexposed problems. Reliability, maintainability, availability, and safety should be evaluated by the LCC analysis with the reliability methods, so we study methodologies for the LCC analysis. Present Worth can be calculated by multiplication of Annual Equivalent Cost and PWAF. Reliability engineering related methods are needed for the process of dividing Present Worth into PWAF, and the practical use of reliability methods can improve accuracy of LCC analysis.

  • PDF

해양환경하중 및 지반의 불확실성을 고려한 중력식 해상풍력 기초의 신뢰성 해석 (Reliability Analysis of Gravity-based Offshore Wind Turbine Foundation Considering Ocean Environmental Loads and Soil Uncertainty)

  • 이상근;김동현
    • 한국해양공학회지
    • /
    • 제29권5호
    • /
    • pp.359-365
    • /
    • 2015
  • A reliability analysis of the gravity-based foundation of anoffshore wind turbine was performed by considering the uncertainties of the design variables, including environmental loads. The limit state functions of the gravity-based foundation were defined using the response limits of the support structures suggested in the DNV standard. The wind load couldbe obtained using the GH_bladed software, and the wave load was calculated using the Morison equation. Then, the extreme distributions of the wind and wave loads were estimated by applying the peak over threshold (POT) method to the wind and wave load data. The probability distribution characteristics of the soil properties were defined with reference to a southwest coast geotechnical survey report. The reliability index was evaluated for each failure mode using a first-order reliability method.

Assessment of reliability-based FRP reinforcement ratio for concrete structures with recycled coarse aggregate

  • Ju, Minkwan;Park, Kyoungsoo;Lee, Kihong;Ahn, Ki Yong;Sim, Jongsung
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.399-405
    • /
    • 2019
  • The present study assessed the reliability-based reinforcement ratio of FRP reinforced concrete structure applying recycled coarse aggregate (RCA) concrete. The statistical characteristics of FRP bars and RCA concrete were investigated from the previous literatures and the mean value and standard deviation were employed for the reliability analysis. The statistics can be regarded as the material uncertainty for configuring the probability distribution model. The target bridge structure is the railway bridge with double T-beam section. The replacement ratios of RCA were 0%, 30%, 50%, and 100%. From the probability distribution analysis, the reliability-based reinforcement ratios of FRP bars were assessed with four cases according to the replacement ratio of RCA. The reinforcement ratio of FRP bars at RCA 100% showed about 17.3% higher than the RCA 0%, where the compressive strength at RCA 100% decreased up to 27.5% than RCA 0%. It was found that the decreased effect of the compressive strength of RCA concrete could be compensated with increase of the reinforcement ratio of FRP bars. This relationship obtained by the reliability analysis can be utilized as a useful information in structural design for FRP bar reinforced concrete structures applying RCA concrete.

교량기초의 신뢰성 설계규준에 관한 연구 (A Study on Reliability Based Design Criteria for Bridge Foundation)

  • 손용우;정철원
    • 전산구조공학
    • /
    • 제6권1호
    • /
    • pp.77-89
    • /
    • 1993
  • Current Bridge foundation design is based on Working Stress Design(WSD), but Load Factor Based on Optimum Reliability(LFBOR) design method is more rational than the WSD. For this reason, this study proposes a reliability based design criteria for the bridge foundation, which is most common type of bridge foundation(Shallow, Pile and Caission), and also proposes the theoretical basis of nominal safety factors of stability analysis by introducing the reliability theory. The limit state equations of stability analysis of bridge foundation and the uncertainty measuring algorithms of each equation are also derived by Cornell's MFOSM(Mean First Order 2nd Moment Methods)using the stability analysis fourmula Highway Bridge Design Codes.

  • PDF

Reliability Based Real-time Slope Stability Assessment

  • Lee, Seung-Rae;Choi, Jung-Chan;Kim, Yun-Ki
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.427-435
    • /
    • 2008
  • A reliability based slope stability assessment method is proposed and examined considering the variation of matric suction which is measured by a real time slope monitoring system. Mean value first order reliability method and advanced first order reliability method are used to calculate reliability indices of a slope. The applicability of methods is compared by applying them to the range of matric suctions measured by the real-time monitoring system. Sensitivity analysis is also performed to examine the contribution of random variables to the reliability index of slope. Finally, the proposed method is applied to a model slope. The results show that the reliability index of slope can be used for efficient slope management by quantifying the risk of slope in real time.

  • PDF

Partial safety factors for retaining walls and slopes: A reliability based approach

  • GuhaRay, Anasua;Baidya, Dilip Kumar
    • Geomechanics and Engineering
    • /
    • 제6권2호
    • /
    • pp.99-115
    • /
    • 2014
  • Uncertainties in design variables and design equations have a significant impact on the safety of geotechnical structures like retaining walls and slopes. This paper presents a possible framework for obtaining the partial safety factors based on reliability approach for different random variables affecting the stability of a reinforced concrete cantilever retaining wall and a slope under static loading conditions. Reliability analysis is carried out by Mean First Order Second Moment Method, Point Estimate Method, Monte Carlo Simulation and Response Surface Methodology. A target reliability index ${\beta}$ = 3 is set and partial safety factors for each random variable are calculated based on different coefficient of variations of the random variables. The study shows that although deterministic analysis reveals a safety factor greater than 1.5 which is considered to be safe in conventional approach, reliability analysis indicates quite high failure probability due to variation of soil properties. The results also reveal that a higher factor of safety is required for internal friction angle ${\varphi}$, while almost negligible values of safety factors are required for soil unit weight ${\gamma}$ in case of cantilever retaining wall and soil unit weight ${\gamma}$ and cohesion c in case of slope. Importance of partial safety factors is shown by analyzing two simple geotechnical structures. However, it can be applied for any complex system to achieve economization.

Optimization of a SMES Magnet in the Presence of Uncertainty Utilizing Sampling-based Reliability Analysis

  • Kim, Dong-Wook;Choi, Nak-Sun;Choi, K.K.;Kim, Heung-Geun;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • 제19권1호
    • /
    • pp.78-83
    • /
    • 2014
  • This paper proposes an efficient reliability-based optimization method for designing a superconducting magnetic energy system in presence of uncertainty. To evaluate the probability of failure of constraints, samplingbased reliability analysis method is employed, where Monte Carlo simulation is incorporated into dynamic Kriging models. Its main feature is to drastically reduce the numbers of iterative designs and computer simulations during the optimization process without sacrificing the accuracy of reliability analysis. Through comparison with existing methods, the validity of the proposed method is examined with the TEAM Workshop Problem 22.

Conjugate finite-step length method for efficient and robust structural reliability analysis

  • Keshtegar, Behrooz
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.415-422
    • /
    • 2018
  • The Conjugate Finite-Step Length" (CFSL) algorithm is proposed to improve the efficiency and robustness of first order reliability method (FORM) for reliability analysis of highly nonlinear problems. The conjugate FORM-based CFSL is formulated using the adaptive conjugate search direction based on the finite-step size with simple adjusting condition, gradient vector of performance function and previous iterative results including the conjugate gradient vector and converged point. The efficiency and robustness of the CFSL algorithm are compared through several nonlinear mathematical and structural/mechanical examples with the HL-RF and "Finite-Step-Length" (FSL) algorithms. Numerical results illustrated that the CFSL algorithm performs better than the HL-RF for both robust and efficient results while the CFLS is as robust as the FSL for structural reliability analysis but is more efficient.