The vehicle of urban transit is a complex system that consists of various electric, electronic, and mechanical equipments, and the maintenance cost of this complex and large-scale system generally occupies sixty percent of the LCC (Life Cycle Cost). For reasonable establishing of maintenance strategies, safety security and cost limitation must be considered at the same time. The concept of system reliability has been introduced and optimized as the key of reasonable maintenance strategies. For optimization, three preceding studies were accomplished; standardizing a maintenance classification, constructing RBD (Reliability Block Diagram) of VVVF (Variable Voltage Variable Frequency) urban transit, and developing a web based reliability evaluation system. Historical maintenance data in terms of reliability index can be derived from the web based reliability evaluation system. In this paper, we propose applying inverse problem analysis method and hybrid neuro-genetic algorithm to system reliability optimization for using historical maintenance data in database of web based system. Feed-forward multi-layer neural networks trained by back propagation are used to find out the relationship between several component reliability (input) and system reliability (output) of structural system. The inverse problem can be formulated by using neural network. One of the neural network training algorithms, the back propagation algorithm, can attain stable and quick convergence during training process. Genetic algorithm is used to find the minimum square error.
일반적으로 구조물에는 하중, 재료상수, 부재크기와 구조해석 등의 오차에 대한 불확실성을 존재하고 이러한 불확실성은 구조물의 최적설계에 많은 영향을 준다. 확률론적 해석은 급속하게 발전하고 있고 여러 불확실성을 고려해야 하는 구조설계에서 중요한 기법으로 사용되고 있다. 본 논문에서는 구조물에서 발생하는 불확실성을 고려하기 위하여 신뢰성 해석을 통하여 신뢰도 지수를 산출하였으며 이 값을 최적설계의 제약조건으로 설정하여 확률론적 최적설계를 수행하였다. 최적설계 결과 기존의 불확실량이 고려되지 않은 확정론적 최적설계의 결과 값보다 불확실량이 고려된 최적설계 결과값이 더 크게 나타났으나 불확실성을 고려하는 경우가 구조물의 안정성이 더 확보되는 것으로 생각된다. 본 논문에서는 최적화 기법 중 가장 강력하다고 알려진 SQP(순차이차계획법)을 이용하여 최적화를 수행하였는데 SQP법은 최적화 문제의 정식화를 반복계산 하는 것에 바탕을 두고 각 반복계산에 있어서는 2차 프로그래밍 부속 문제의 해를 구하는데 그 기본을 두는 방법이다. 또 불확실량을 고려한 최적설계를 위해 신뢰성을 기초한 최적설계를 수행하여 신뢰도지수와 파괴확률을 계산하였다. 확정론적 최적설계와 달리 치수, 모양, 재료와 작용하중들의 양에 신뢰성해석을 수행하여 나온 신뢰도지수와 파괴확률을 앞에서 계산한 최적화 과정의 제약조건식에 가적으로 설정하여 최적설계를 수행하였다.T-stub 접합부를 예제로 적용하였으며 해석 결과의 기존문헌과 비교하였다.
확정론적 최적설계에서는 설계변수의 변동이나 불확실성 등을 최적화 과정에서 고려하지 않는다. 신뢰성 최적설계는 설계변수의 임의성을 체계적인 확률 및 통계이론을 적용하여 생산품의 안정성을 보다 정밀하고 합리적으로 다룬다. 본 논문에서 설계변수를 확률변수로 취급하여 실제 제작시의 제작오차를 고려한 표준편차를 주었으며, 설계변수의 평균에 대한 표준편차를 기존의 고정된 값을 사용하지 앉고 평균과 표준편차의 관계가 오목함수로 나타나도록 하였다 즉, 설계변수의 평균이 달라짐에 따라 표준편차도 변동계수만큼 변하도록 하였다. 신뢰성해석은 불변 2차 모멘트 방법을 이용하고 신뢰성을 구하는 방법은 신뢰도 지수 접근방법의 개선된 일계 2차 모멘트 방법을 이용하여 신뢰성을 구하였다. 두 가지 예제를 통해 확정론적 최적설계, 신뢰성 최적설계와 표준편차의 변동을 고려한 신뢰성 최적설계의 값을 비교하였다.
An engine cradle is a quite important structural assembly for supporting the engine, suspension and steering parts of vehicle and absorbing the vibrations during the drive and the shock in the car crash. Recently, the engine cradle having structural stiffness enough to support the surrounding parts and absorbing the shock of collision has been widely used. The hydroforming technology may cause many advantages to automotive applications in terms of better structural integrity of parts, reduction of production cost, weight reduction, material saving, reduction in the number of joining processes and improvement of reliability. We focus on increasing the durability and the dynamic performance of engine cradle. For realizing this objective, several optimization design techniques such as shape, size, and topology optimization are performed. This optimization scheme based on the sensitivity can provide distinguished performance improvement in using hydroforming.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권4호
/
pp.1579-1602
/
2020
In the design of production system, buffer capacity allocation is a major step. Through polymorphism analysis of production capacity and production capability, this paper investigates a buffer allocation optimization problem aiming at the multi-stage production line including unreliable machines, which is concerned with maximizing the system theoretical production rate and minimizing the system state entropy for a certain amount of buffers simultaneously. Stochastic process analysis is employed to establish Markov models for repairable modular machines. Considering the complex structure, an improved vector UGF (Universal Generating Function) technique and composition operators are introduced to construct the system model. Then the measures to assess the system's multi-state reliability and structural complexity are given. Based on system theoretical production rate and system state entropy, mathematical model for buffer capacity optimization is built and optimized by a specific genetic algorithm. The feasibility and effectiveness of the proposed method is verified by an application of an engine head production line.
With increasing competition, the engineering industry is in need of optimization of designs that would lead to minimum cost or weight. Recent developments in Genetic Algorithms (GAs) makes it possible to model and obtain optimal solutions in structural design that can be put to use in industry. The main objective of this paper is to illustrate typical applications of GAs to practical design of structural systems such as steel trusses, towers, bridges, reinforced concrete frames, bridge decks, shells and layout planning of buildings. Hence, instead of details of GA process, which can be found in the reported literature, attention is focussed on the description of the various applications and the practical aspects that are considered in Genetic Modeling. The paper highlights scope and future directions for wider applications of GA based methodologies for optimal design in practice.
Khajehzadeh, Mohammad;Taha, Mohd Raihan;Eslami, Mahdiyeh
Structural Engineering and Mechanics
/
제45권1호
/
pp.111-127
/
2013
In this paper, a new version of gravitational search algorithm based on opposition-based learning (OBGSA) is introduced and applied for optimum design of reinforced concrete retaining walls. The new algorithm employs the opposition-based learning concept to generate initial population and updating agents' position during the optimization process. This algorithm is applied to minimize three objective functions include weight, cost and $CO_2$ emissions of retaining structure subjected to geotechnical and structural requirements. The optimization problem involves five geometric variables and three variables for reinforcement setups. The performance comparison of the new OBGSA and classical GSA algorithms on a suite of five well-known benchmark functions illustrate a faster convergence speed and better search ability of OBGSA for numerical optimization. In addition, the reliability and efficiency of the proposed algorithm for optimization of retaining structures are investigated by considering two design examples of retaining walls. The numerical experiments demonstrate that the new algorithm has high viability, accuracy and stability and significantly outperforms the original algorithm and some other methods in the literature.
Probabilistic methods are used in engineering where a computational model contains random variables. The proposed method under development: Direct Optimized Probabilistic Calculation (DOProC) is highly efficient in terms of computation time and solution accuracy and is mostly faster than in case of other standard probabilistic methods. The novelty of the DOProC lies in an optimized numerical integration that easily handles both correlated and statistically independent random variables and does not require any simulation or approximation technique. DOProC is demonstrated by a collection of deliberately selected simple examples (i) to illustrate the efficiency of individual optimization levels and (ii) to verify it against other highly regarded probabilistic methods (e.g., Monte Carlo). Efficiency and other benefits of the proposed method are grounded on a comparative case study carried out using both the DOProC and MC techniques. The algorithm has been implemented in mentioned software applications, and has been used effectively several times in solving probabilistic tasks and in probabilistic reliability assessment of structures. The article summarizes the principles of this method and demonstrates its basic possibilities on simple examples. The paper presents unpublished details of probabilistic computations based on this method, including a reliability assessment, which provides the user with the probability of failure affected by statistically dependent input random variables. The study also mentions the potential of the optimization procedures under development, including an analysis of their effectiveness on the example of the reliability assessment of a slender column.
가스터빈엔진의 가장 핵심 부품인 디스크와 블레이드는 고온, 고압축비, 고속 회전이라는 가혹한 환경에서 지속적으로 운용된다. 이러한 가혹한 환경과 디스크와 블레이드가 가지는 큰 회전 에너지로 인해 디스크 및 블레이드에 의해 유발되는 파손은 항공기 손상 혹은 탑승자의 피해로 이어지는 재해적 고장 혹은 한계 고장으로 이어진다. 그러므로 디스크와 블레이드의 구조적 건전성의 마진을 충분히 확보하기 위해서 본 연구에서는 디스크의 취약 부위인 도브테일의 형상을 최적화하고, 그 해의 강건성을 확인하기 위해 치수 공차와 피로 수명의 산포와 같은 불확실성에 대하여 신뢰도 해석을 수행하고자 한다. 이 결과를 통해 결정론적 방법인 최적설계의 필요성과 함께 한계를 확인하고, 향후 신뢰도 기반 최적설계의 필요성을 인지하고자 한다. 이를 위해 비선형 열-구조 연성해석과 접촉 해석을 포함한 유한요소해석을 수행하였다.
Computational Structural Engineering : An International Journal
/
제2권1호
/
pp.11-17
/
2002
Cost-effectiveness in design is considered for determining the target reliability of concrete bridges under seismic actions. This objective can be achieved based on the economic optimization of the expected life-cycle cost of a bridge, which includes initial cost, direct losses, and indirect losses of a bridge due to strong earthquakes over its lifetime. A separating factor is defined to consider the redundancy of a transportation network. The Park-Ang damage model is employed to define the damage of a bridge under seismic action, and a Monte Carlo method based on the DRAIN-2DX program is developed to assess the failure probability of a bridge. The results for an example bridge analyzed in this paper show that the optimal target failure probability depends on the traffic volume carried by the bridge and is between 1.0×10/sup -3/ to 3.0×10/sup -3/ over a life of 50 years.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.