• 제목/요약/키워드: Reliability of electronic packaging

검색결과 124건 처리시간 0.032초

Electrodeposited Tin Properties & Their Effect on Component Finish Reliability

  • Fusco Phil;Schetty Rob
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2004년도 ISMP Pb-free solders and the PCB technologies related to Pb-free solders
    • /
    • pp.201-209
    • /
    • 2004
  • As the European Community's Directive on the Restriction of Hazardous Substances in Electrical and Electronic Equipment banning lead (Pb) in electronics products will take effect on July 1, 2006, most electronics manufacturers will be commencing with volume production of Pb-free components by the middle of 2004. Electrodeposited pure tin finishes on electronic components are a leading contender to replace the industry standard tin-lead. Commensurate with this shift will be a somewhat steep learning curve as manufacturers adapt a variety of equipment and processes to contend with the issues surrounding this critical, industry-wide material conversion. Since the electrodeposited finish directly influences the critical reliability characteristics of the component itself, the nature of the Pb-free component finish must be well characterized and understood. Only through a thorough examination of the attributes of the electroplated tin deposit can critical decisions be made regarding component finish reliability. This paper investigates the properties of electrodeposited tin that may have an effect on component reliability, namely, grain structure (size and shape), oxide formation, tin whisker formation, and solderability. Data will be presented from laboratory and production settings, with the objective being to enable manufacturers to draw their own conclusions regarding previously established perceptions and misconceptions about electrodeposited tin properties.

  • PDF

Aluminium Based Brazing Fillers for High Temperature Electronic Packaging Applications

  • Sharma, Ashutosh;Jung, Jae-Pil
    • 마이크로전자및패키징학회지
    • /
    • 제22권4호
    • /
    • pp.1-5
    • /
    • 2015
  • In high temperature aircraft electronics, aluminium based brazing filler is the prime choice today. Aluminium and its alloys have compatible properties like weight minimization, thermal conductivity, heat dissipation, high temperature precipitation hardening etc. suitable for the aerospace industry. However, the selection of brazing filler for high temperature electronics requires high temperature joint strength properties which is crucial for the aerospace. Thus the selection of proper brazing alloy material, the composition and brazing method play an important role in deciding the final reliability of aircraft electronic components. The composition of these aluminium alloys dependent on the addition of the various elements in the aluminium matrix. The complex shapes of aluminium structures like enclosures, heat dissipaters, chassis for electronic circuitry, in avionics are designed from numerous individual components and joined thereafter. In various aircraft applications, the poor strength caused by the casting and shrinkage defects is undesirable. In this report the effect of various additional elements on Al based alloys and brazing fillers have been discussed.

유연성 소자용 금속 전극의 신뢰성 연구 동향 (Reliability of Metal Electrode for Flexible Electronics)

  • 김병준
    • 마이크로전자및패키징학회지
    • /
    • 제20권4호
    • /
    • pp.1-6
    • /
    • 2013
  • Recently, various types of flexible devices such as flexible displays, batteries, e-skins and solar cell panels have been reported. Most of the researches focus on the development of high performance flexible device. However, to realize these flexible devices, the long-term reliability should be guaranteed during the repeated deformations of flexible devices because the direct mechanical stress would be applied on the electronic devices unlike the rigid Si-based devices. Among various materials consisting electronics devices, metal electrode is one of the weakest parts against mechanical deformation because the mechanical and electrical properties of metal films degrade gradually due to fatigue damage during repeated deformations. This article reviews the researches of fatigue behavior of thin metal film, and introduces the methods to enhance the reliability of metal electrode for flexible device.

자동차 전장용 무연 솔더 기술 (Lead-free Solder Technology and Reliability for Automotive Electronics)

  • 이순재;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제22권3호
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, properties of Pb-free solders for automotive electronics parts were discussed. Lead-free solders for electronics became important after RoHS (Restriction of the use of certain Hazardous Substances) to avoid environmental pollution. Also the growing electronic rate in automotive parts and ELV (End-of Life Vehicles) make Pb-free solder for automotive electronics to be inevitable trend. Definitely, Pb-free solder for automotive electronics should have good wettability, basic strength, but need more reliability than other solders, since it has harsh condition like high temperature, humidity and engine vibration. Thus, shear strength test, thermal shock, drop test and many others are needed to ensure the high reliability. This study describes the properties and requirements of Pb-free solders for automotive electronics.

BLP 패키지의 솔더 조인트의 신뢰성 연구 (Solder Joint Reliability of Bottom-leaded Plastic Package)

  • 박주혁
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 춘계 기술심포지움 논문집
    • /
    • pp.79-84
    • /
    • 2002
  • The bottom-leaded plastic(BLP) packages have attracted substantial attention since its appearance in the electronic industry. Since the solder materials have relatively low creep resistance and are susceptible to low cycle fatigue, the life of the solder joints under the thermal loading is a critical issue for the reliability The represent study established a finite element model for the analysis of the solder joint reliability under thermal cyclic loading. An elasto-plastic constitutive relation was adopted for solder materials in the modeling and analysis. A 28-pin BLP assembly is modeled to investigate the effects of various epoxy molding compound, leadframe materials on solder joint reliability. The fatigue life of solder joint is estimated by the modified Coffin-Hanson equation. The two coefficients in the equation are also determined. A new design for lead is also evaluated by using finite element analysis. Parametric studies have been conducted to investigate the dependence of solder joint fatigue life on various package materials.

  • PDF

Adhesive Flip Chip Technology

  • Paik, Kyung-W
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2000년도 2nd Korea-Japan Advanceed Semiconductor Packaging Technology Seminar
    • /
    • pp.7-38
    • /
    • 2000
  • Performance, reliability, form factor drive flip chip use. BGAs and CSPs will provide stepping stone to FC DCA .Growing vendor infrastructure - Low cost, high density organic substrates -New generations of fluxes and underfills .Adhesives flip chip technology as a low cost flip chip alternatives -Low cost Au stud or Electroless Ni bumps -Reliable thermal cycling and electrical performance.

  • PDF

Highly Reliable Solder ACFs FOB (Flex-on-Board) Interconnection Using Ultrasonic Bonding

  • Kim, Yoo-Sun;Zhang, Shuye;Paik, Kyung-Wook
    • 마이크로전자및패키징학회지
    • /
    • 제22권1호
    • /
    • pp.35-41
    • /
    • 2015
  • In this study, in order to improve the reliability of ACF interconnections, solder ACF joints were investigated interms of solder joint morphology and solder wetting areas, and evaluated the electrical properties of Flex-on-Board (FOB) interconncections. Solder ACF joints with the ultrasonic bonding method showed excellent solder wetting by broken solder oxide layers on solder surfaces compared with solder joints with remaining solder oxide layer bonded by the conventional thermo-compression (TC) bonding method. When higher target temperature was used, Sn58Bi solder joints showed concave shape due to lower degree of cure of resin at solder MP by higher heating rate. ACFs with epoxy resins and SAC305 solders showed lower degree of resin cure at solder MP due to the slow curing rate resulting in concave shaped solder joints. In terms of solder wetting area, solder ACFs with $25-32{\mu}m$ diameters and 30-40 wt% showed highest wetted solder areas. Solder ACF joints with the concave shape and the highest wetting area showed lower contact resistances and higher reliability in PCT results than conventional ACF joints. These results indicate that solder morphologies and wetting areas of solder ACF joints can be controlled by adjustment of bonding conditions and material properties of solder and polymer resin to improve reliability of ACF joints.

전기자동차용 고신뢰성 파워모듈 패키징 기술 (Power Module Packaging Technology with Extended Reliability for Electric Vehicle Applications)

  • 윤정원;방정환;고용호;유세훈;김준기;이창우
    • 마이크로전자및패키징학회지
    • /
    • 제21권4호
    • /
    • pp.1-13
    • /
    • 2014
  • The paper gives an overview of the concepts, basic requirements, and trends regarding packaging technologies of power modules in hybrid (HEV) and electric vehicles (EV). Power electronics is gaining more and more importance in the automotive sector due to the slow but steady progress of introducing partially or even fully electric powered vehicles. The demands for power electronic devices and systems are manifold, and concerns besides aspects such as energy efficiency, cooling and costs especially robustness and lifetime issues. Higher operation temperatures and the current density increase of new IGBT (Insulated Gate Bipolar Transistor) generations make it more and more complicated to meet the quality requirements for power electronic modules. Especially the increasing heat dissipation inside the silicon (Si) leads to maximum operation temperatures of nearly $200^{\circ}C$. As a result new packaging technologies are needed to face the demands of power modules in the future. Wide-band gap (WBG) semiconductors such as silicon carbide (SiC) or gallium nitride (GaN) have the potential to considerably enhance the energy efficiency and to reduce the weight of power electronic systems in EVs due to their improved electrical and thermal properties in comparison to Si based solutions. In this paper, we will introduce various package materials, advanced packaging technologies, heat dissipation and thermal management of advanced power modules with extended reliability for EV applications. In addition, SiC and GaN based WBG power modules will be introduced.

솔더 합금 종류 및 솔더 조인트의 신뢰성 평가 기법 (Solder Alloy Types and Solder Joint Reliability Evaluation Techniques)

  • 김유권;김헌수;김태완;김학성
    • 마이크로전자및패키징학회지
    • /
    • 제30권1호
    • /
    • pp.17-29
    • /
    • 2023
  • 본 논문에서는 전자제품의 소형화와 고성능화에 따라 패키징 기술에서 핵심적인 역할을 하는 솔더 조인트의 신뢰성 평가 방법을 소개한다. 우선, 다양한 합금 조성과 제품 형태에 따른 솔더의 특성을 설명하고, 여러 패키지에서의 솔더 조인트 구조에 대한 개요를 제시한다. 그 다음 솔더 합금의 조성과 미시구조가 솔더의 열적 및 기계적 특성에 미치는 영향을 분석하며, 솔더 크리프 거동에 대해 간략히 소개한다. 이어서, 신뢰성 평가를 위한 크리프 모델과 피로 모델 등을 고려한 분석 기법들을 소개하고, 솔더 조인트의 신뢰성을 향상시킬 수 있는 방안에 대해 논의한다. 본 연구는 반도체 패키징 기술 분야에서 솔더 조인트의 신뢰성 평가와 개선에 유익한 정보를 제공할 것으로 기대된다.

기밀성 분석을 통한 RFID 태그 패키지 에폭시 몰딩 연구 (A Study on the RFID Tag Package Epoxy Molding through Leak Detection)

  • 반창우;홍석기;장동영
    • 한국생산제조학회지
    • /
    • 제21권2호
    • /
    • pp.297-304
    • /
    • 2012
  • Recently RFID (Radio Frequency Identification) technology advances in wireless communication technologies are bringing new challenges. But RFID tag packaging technology has been lagging compared to the demand, so this technology is being required to improve reliability. In this paper, reliability comparison among 11 types of most commonly used epoxy molding in electrical/electronic components packaging has been made through analysis of confidentiality using a humidity sensor. Consequently, the variation of moisture penetration time causes has been verified by the changes in molding thickness for 3 types of epoxy, and from the result, the best experimental results were observed in terms of confidentiality. Moreover we have been confirmed the relationship between confidentiality, the molding thickness, and thermal property of epoxy through thermal analysis.