• Title/Summary/Keyword: Reliability life

Search Result 2,446, Processing Time 0.035 seconds

Fatigue Life Prediction of the Carrier of Slewing Reducer for Tower Crane (타워크레인용 선회감속기의 캐리어 피로 수명 예측)

  • Cho, Seung-Je;Park, Young-Jun;Han, Jeong-Woo;Lee, Geun-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.131-140
    • /
    • 2015
  • The purpose of this study is to predict the fatigue life of a planet carrier of a slewing reducer for a tower crane. To predict the fatigue life of the carrier, the inertia endurance test was carried out, and then the input torque profile for the reducer was obtained. The load profile acting on the planet pins that assembled the carrier was calculated from the measured input torque profile using commercial gearbox analysis software. The stress profiles of the carrier weak points were analyzed from the calculated load profile and boundary conditions using commercial FE software, and the stress cycles were determined using the rainflow counting method. Finally, the fatigue life of the carrier was predicted using the equivalent stress range by considering the effect of mean stress, and an S-N curve was drawn up using the GL guideline and the cumulative damage law.

Reliability Assessment and Accelerated Life Prediction of Gas Welded Joint in the Rail Road Car Body (1. Plug and Ring Type) (철도차량 차체 가스용접 이음재의 가속수명예측과 신뢰도 평가)

  • Baek, Seung-Yeb
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.77-85
    • /
    • 2010
  • Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. Gas welding is very important and useful technology in fabrication of a railroad car and vehicles structure.However fatigue strength of the gas welded joints is considerably lower than parent metal due to stress concentration at the weld, fatigue strength evaluation of gas welded joints are very important to evaluate the reliability and durability of railroad cars and to establish a criterion of long life fatigue design. In this paper, $({\Delta}{\sigma}_a)_R-N_f$ curve were obtained by fatigue tests. Using these results, the accelerated life test(ALT) was conducted. From the experimental results, an acceleration model was derived and acceleration factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of plug and ring gas welded joints and data analysis by statistic reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

Reliability and Validity of an Instrument for Adolescents Meaning in Life Scale(AMIL) (청소년 대상 생의 의미 측정도구의 신뢰도 및 타당도 검증)

  • Kang, Kyung-Ah;Kim, Shin-Jeong;Song, Mi-Kyung;Sim, Song-Yong
    • Journal of Korean Academy of Nursing
    • /
    • v.37 no.5
    • /
    • pp.625-634
    • /
    • 2007
  • Purpose: The purpose of this study was to test the reliability and validity of an MIL instrument for adolescents. Method: The research design was a three-phase, methodological study. 1) The original 46 items of the Meaning in Life (MIL) Scale were reviewed and corrected partially by 20 adolescents. 2) The content was validated by an expert panel (n=15) and adolescents (n=5). 3) The instrument was validated by survey (n=468). Finally, 33 items were chosen for the adolescents meaning in life(AMIL) scale. Results: Cronbach's alpha coefficient of the 33 items was .92, confirming the high internal consistency of the instrument. 2) Eight factors were extracted through factor analysis: 'experience of love', 'making efforts for goal', 'awareness of essential being', 'awareness of self limitation', 'feeling of satisfaction', 'relation experience', 'positive thinking', and 'hope'. These factors explained 58.26% of the total variance. Conclusion: AMIL Scale was identified as a tool with a high degree of reliability and validity. The tool can therefore be effectively utilized to assess the degree of meaning of life in caring areas for adolescents. Studies on AMIL of different adolescent subjects are needed for further verification.

A Study on the Life Characteristics of Lightweight Bearings (경량 베어링 수명 특성에 관한 연구)

  • Lee, Choong-Sung;Park, Jong-Won;Lim, Sin-Yeol;Kang, Bo-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.819-825
    • /
    • 2021
  • In the industry, the use of lightweight bearings is increasing to minimize motor power loss, and in particular, the application of next-generation systems such as robots and drones is increasing. Bearing manufacturers are producing lightweight bearings by changing the bearing material, but related researches is insufficient. In this paper, life test and structural analysis were performed for lightweight bearings, and shape parameters and scale parameters were derived based on the life test results. It was confirmed that the shape parameter was 2.52 and the scale parameter was 164 hours. As a result of calculating the dynamic load rating based on the B10 life, it was confirmed that the dynamic load rating of the lightweight bearing was 7% compared to the formula suggested by ISO 281. The reason is that the material of the retainer, which is a major failure part, is a polyamide 66 series that reacts sensitively to heat, so It is judged to show a lot of difference from the ISO 281 calculation formula.

Life Analysis and Reliability Prediction of Relays based on Life Prediction Method (수명예측 방법에 따른 계전기의 수명분석 및 신뢰도 예측)

  • Shin, Kun-Young;Ji, Jung-Geon;Han, Jae-Hyun;Lee, Duk-Gyu;Son, Young-Jin;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1327-1335
    • /
    • 2011
  • Recently, also in railway vehicles, related products are being designed and manufactured through RAMS activities in order to secure their reliability, availability, maintainability & safety. Subway operators are conducting R&D on various preventive maintenance methods and applying them to the field so as to establish a reliability centered maintenance(RCM) system. In this connection, manufacturers shall carry out R&D based on reliability from the first design stage of development to provide high quality products to subway operators. And operators shall have the products operated properly to their particular operating environment and managed based on the standard maintenance manual. Not only that, but the related field data shall be fed back into the manufacturers to upgrade upcoming products by organic cooperation between manufacturer and operators. However, the mutually beneficial cooperative relationship is not still developed in the domestic railway industry. In terms of methodology for life prediction, this study was intended to analyze field data on relays used for rolling stocks considering operational characteristics in the position of subway operators and predict parts reliability using reliability prediction program from the standpoint of manufacturers as well.

  • PDF

Improvement of the Heat Resistance Reliability of an Axial Smoke Exhaust Fan (배연용 축류팬의 내열 신뢰성 향상)

  • Hur, Jin-Huek;Heo, Ki-Moo;Moon, Seung-Jae;Lee, Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.656-662
    • /
    • 2009
  • In this paper, the heat resistance reliability of an axial smoke exhaust fan was investigated. An axial smoke exhaust fan should be capable of operating at $250^{\circ}C$ for 2 hours. The heat resistance reliability was evaluated by the heat resistance reliability test. A B10 life with a 90% confidence level was estimated to be about 48 minute. The failure occurred in the motor due to high temperature. The main failure mechanisms of the motor were melting of bond and insulating paper and burning of insulating materials in the coil. The heat resistance reliability was improved by changing the way to unite the core and the coil and by replacing the insulating paper and the insulating materials of the coil. A B10 life with a 90% confidence level of a modified axial smoke exhaust fan was estimated to be over 120 minute.

Reliability-Optimal Design Method of High-Speed Railway Bridges Based upon Expected Life-Cycle Cost (기대생애주기비용에 기초한 고속철도교량의 신뢰성-최적설계 방안)

  • Lee, Woo-Sang;Bang, Myung-Seok;Han, Sung-Ho;Lee, Chin-Ok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.102-110
    • /
    • 2010
  • The reliability evaluation may be a efficient method for estimating of the quantitative structural safety considering the effect of uncertainties included in high-speed railway bridges. The expected life-cycle cost(LCC) based upon the reliability evaluation will reasonably offer the safety level and design criteria of high-speed railway bridges. Therefore, this study determined the expected life-cycle cost and optimal design method of high-speed railway bridges on the basis of the result of the numerical analysis and reliability evaluation. For this, after creating various design method based upon the standard design of high-speed railway bridges, the numerical analysis is conducted on each of the alternative design methods. The reliability evaluation by the design strength limit state function is conducted considering the effect of external uncertainties on the basis of the numerical analysis result. The expected life-cycle cost of high-speed railway bridges is calculated on the basis of the reliability evaluation result by each of the alternative design methods. Also, the optimal design method is determined using the calculated expected life-cycle cost. In addition, The result of reliability evaluation and expected life-cycle cost of optimal design method are examined considering the effect of internal uncertainties. It is expected that the result of this study can be used as a basic information for the systematic safety evaluation and optimal structure design of high-speed railway bridges.

Development of Probability Distribution Estimation Program for Fatigue Crack Growth Lives (피로균열전파수명의 확률분포추정 프로그램 개발)

  • 김선진;안석환;윤성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1058-1064
    • /
    • 2001
  • In this paper, the development of probability distribution estimation program for fatigue crack growth lives was summarize. The probability distribution estimation program of life was developed to increase the reliability of life estimation. In this study, it is considered that the cause of scatter in fatigue crack growth data is due to material inhomogeneity. The material resistance to fatigue crack growth is modelled as a spatial stochastic process, which varies randomly along the crack path. We developed the GUI program to estimate the probability distribution and reliability using the non-Gaussian stochastic process method. This program can be used for the reliability assessment.

  • PDF

Realistic Life Analysis of Spiral Bevel Gears in the Drive System based of Probablistic Reliability (확률 신뢰성에 의한 스파이럴 베벨기어 구동장치의 합리적 수명 해석)

  • 김하수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.42-48
    • /
    • 1997
  • Drive systems are composed of spiral bevel gear, axle and bearings. In this paper, drive systems and the part of them are analyzed and a correlation of the factor that shows the geometry of spiral bevel gear is evaluated. The Weibull distribution of probability for survival, which caused by the load of bearings and gear teeth, would be calculated, and the life and reliability with equivalent function could be measured more specifically. The reliability methods are applied as a probability of which the gear drive systems are satisfiably operated.

  • PDF

Reliability life evaluation of gear driving system for the intermediate shaft (중간축을 고려한 기어구동장치의 신뢰수명 평가)

  • 김하수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.147-153
    • /
    • 2000
  • This paper presents a design method using CAE(Computer Aided Engineering ) with the consideration of reliability for optimal gear driving system. This method considered a configuration of the intermediate shaft. There are four mounting types, such as double straddle, double overhung, output gear overhung, and input ger overhung in the intermediate shaft. The reliability and life analysis are based on the two-parameter Weigbull distribution lives of the gears and bearing . The validity and feasibility of the proposed method are verified by the application to transmission of a industry machine.

  • PDF