• Title/Summary/Keyword: Reliability function

Search Result 2,036, Processing Time 0.033 seconds

Reliability analysis of Industrial plant reinforced concrete columns

  • Cheng, Zhengjie;Yao, Jitao;Gao, Jun
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • Based on the design of reinforced concrete columns in Chinese design codes, the failure function of reinforced concrete (RC) columns cannot be expressed as a linear function. This makes it difficult to reveal the level of reliability control in Chinese design code. Therefore, the failure function of dimensionless form is established in this paper, and the typical components (Industrial plant columns) are selected for analysis. At last, numerical simulation proves that the proposed model can be used to analysis reliability of columns. The results based on this model indicate that there is a strong difference in the reliability of RC columns designed with different design parameters, and the reliability would be lower when the eccentricity produced by crane load is smaller.

A Study on the Reliability Performance Evaluation of Software Reliability Model Using Modified Intensity Function (변형된 강도함수를 적용한 소프트웨어 신뢰모형의 신뢰성능 비교 평가에 관한 연구)

  • Kim, Hee Cheul;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.2
    • /
    • pp.109-116
    • /
    • 2018
  • In this study, we was compared the reliability performance of the software reliability model, which applied the Goel-Okumoto model developed using the exponential distribution, to the logarithmic function modifying the intensity function and the Rayleigh form. As a result, the log-type model is relatively smaller in the mean squared error compared to the Rayleigh model and the Goel-Okumoto model. The logarithmic model is more efficient because of the determination coefficient is relatively higher than the Goel-Okumoto model. The estimated determination coefficient of the proposed model was estimated to be more than 80% which is a useful model in the field of software reliability. Reliability has been shown to be relatively higher in the log-type model than the Rayleigh model and the Goel-Okumoto model as the mission time has elapsed. Through this study, software designer and users can identify the software failure characteristics using mean square error, decision coefficient. The confidence interval can be used as a basic guideline when applying the intensity function that reflects the characteristics of the lifetime distribution.

The Reliability-based Design Optimization for the Military Communication Equipment considering the Dimension Uncertainty (치수 불확실성이 고려된 군용 통신 장비의 신뢰성 기반 최적설계)

  • Park, Dae-Woong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1051-1058
    • /
    • 2011
  • The military communication equipment is required the high reliability for operating adequate functions under severe conditions. This reliability is the essential element for the quality of the product, for the uncontrolled factors, such as the clearance, damage of the material, the reduction of stiffness, which are the designer is unable to handle. In this paper, the uncertainty for the dimension was supposed to the probability model for the military communication equipment, and the average of the objective function was minimized for reducing design uncertainty. The reliability-based design optimization which was implemented the limit state function was formulated into the mathematical model, so the reliable optimized structure was implemented than the base-line design.

The Reliability-Based Design Optimization for the Military Communication Equipment considering the Design Uncertainty (설계 불확실성이 고려된 군용 통신 장비의 신뢰성 기반 최적설계)

  • Park, Dae-Woong;Moon, Woo-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.504-509
    • /
    • 2011
  • The military communication equipment is required the high reliability for operating adequate functions under severe conditions. This reliability is the essential element for the quality of the product, for the uncontrolled factors, such as the clearance, damage of the material, the reduction of stiffness, which are the designer is unable to handle. In this paper, the uncertainty for the design was supposed to the probability model for the military communication equipment, and the average of the objective function was minimized for reducing design uncertainty. The reliability-based design optimization which was implemented the limit state function was formulated into the mathematical model, so the reliable optimized structure was implemented than the base-line design.

  • PDF

A Methodology for Constructing Function Tree & Fault Tree in Reliability Analysis (신뢰성 분석을 위한 Function Tree 및 Fault Tree 구성 방법에 관한 연구)

  • Ha, Sung-Do;Lee, Eon-Kyung;Kang, Dal-Mo
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.333-338
    • /
    • 2001
  • Fault tree is a widely used methodology for analyzing product reliability. The fault trees are usually constructed using the experiences of expert reliability engineers in top-down approaches and have different structures according to each expert's subjectivity. In this work it is tried to find a general method for the fault tree construction based on the function tree that is the result of product function deployment. Based on the function tree, the method has the advantage of resulting an objective fault tree since the faults are defined as the opposite concept of functions. The fault tree construction of this work consists of the following steps: 1) definition of product primary function with the viewpoints of product operation and configuration, 2) construction of functional relation chart using a grouping algorithm, 3) abstraction of functional block diagram according to operation sequences and configuration of a product, 4) construction of function tree for each viewpoint, and 5) construction of fault tree by matching the function tree and simplification of the result.

  • PDF

Fault Tree Construction Method using Function Deployments of Machine Parts (기능 전개를 활용한 기계류 부품의 Fault Tree 구성에 관한 연구)

  • 하성도;이언경;강달모
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.257-263
    • /
    • 2001
  • In the analysis of product reliability, the fault tree is widely used since it shows the interrelations of the faults that lead to the product fault. A top-down approach based on experts’ experience is commonly used in the fault tree construction and the trees often take different forms depending on the intent of the analyst. In this work it is studied how to construct fault trees with the utilization of function trees obtained from analyzing the functions and sub-functions of products in order to suggest a generic way of fault tree construction. The function tree of a product is obtained by analyzing basic functions comprising the product main function in a bottom-up approach so that it enables to construct an objective fault tree. The fault tree for a scroll compressor is shown as an example.

  • PDF

Reliability-aware service chaining mapping in NFV-enabled networks

  • Liu, Yicen;Lu, Yu;Qiao, Wenxin;Chen, Xingkai
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.207-223
    • /
    • 2019
  • Network function virtualization can significantly improve the flexibility and effectiveness of network appliances via a mapping process called service function chaining. However, the failure of any single virtualized network function causes the breakdown of the entire chain, which results in resource wastage, delays, and significant data loss. Redundancy can be used to protect network appliances; however, when failures occur, it may significantly degrade network efficiency. In addition, it is difficult to efficiently map the primary and backups to optimize the management cost and service reliability without violating the capacity, delay, and reliability constraints, which is referred to as the reliability-aware service chaining mapping problem. In this paper, a mixed integer linear programming formulation is provided to address this problem along with a novel online algorithm that adopts the joint protection redundancy model and novel backup selection scheme. The results show that the proposed algorithm can significantly improve the request acceptance ratio and reduce the consumption of physical resources compared to existing backup algorithms.

A Study on the Optimal Release Time Decision of a Developed Software by using Logistic Testing Effort Function (로지스틱 테스트 노력함수를 이용한 소프트웨어의 최적인도시기 결정에 관한 연구)

  • Che, Gyu-Shik;Kim, Yong-Kyung
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.2
    • /
    • pp.1-13
    • /
    • 2005
  • This paper proposes a software-reliability growth model incoporating the amount of testing effort expended during the software testing phase after developing it. The time-dependent behavior of testing effort expenditures is described by a Logistic curve. Assuming that the error detection rate to the amount of testing effort spent during the testing phase is proportional to the current error content, a software-reliability growth model is formulated by a nonhomogeneous Poisson process. Using this model the method of data analysis for software reliability measurement is developed. After defining a software reliability, This paper discusses the relations between testing time and reliability and between duration following failure fixing and reliability are studied. SRGM in several literatures has used the exponential curve, Railleigh curve or Weibull curve as an amount of testing effort during software testing phase. However, it might not be appropriate to represent the consumption curve for testing effort by one of already proposed curves in some software development environments. Therefore, this paper shows that a logistic testing-effort function can be adequately expressed as a software development/testing effort curve and that it gives a good predictive capability based on real failure data.

  • PDF

Reliability index for non-normal distributions of limit state functions

  • Ghasemi, Seyed Hooman;Nowak, Andrzej S.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.3
    • /
    • pp.365-372
    • /
    • 2017
  • Reliability analysis is a probabilistic approach to determine a safety level of a system. Reliability is defined as a probability of a system (or a structure, in structural engineering) to functionally perform under given conditions. In the 1960s, Basler defined the reliability index as a measure to elucidate the safety level of the system, which until today is a commonly used parameter. However, the reliability index has been formulated based on the pivotal assumption which assumed that the considered limit state function is normally distributed. Nevertheless, it is not guaranteed that the limit state function of systems follow as normal distributions; therefore, there is a need to define a new reliability index for no-normal distributions. The main contribution of this paper is to define a sophisticated reliability index for limit state functions which their distributions are non-normal. To do so, the new definition of reliability index is introduced for non-normal limit state functions according to the probability functions which are calculated based on the convolution theory. Eventually, as the state of the art, this paper introduces a simplified method to calculate the reliability index for non-normal distributions. The simplified method is developed to generate non-normal limit state in terms of normal distributions using series of Gaussian functions.

APPROXIMATE CONFIDENCE LIMITS OF THE RELIABILITY PERFORMANCES FOR A COLD STANDBY SERIES SYSTEM

  • SHI YIMIN;SRI XIAOLIN;XU YONG
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.439-445
    • /
    • 2005
  • This paper is to investigate the approximate confidence limits of the reliability performances (such as failure rate, reliability function and average life) for a cold standby series system. The Bayesian approximate upper confidence limit of failure rate is obtained firstly, and next Bayesian approximate lower confidence limits for reliability function and average life are presented. The expressions for calculating Bayesian lower confidence limits of the reliability function and average life are also obtained, and an illustrative example is examined numerically by means of the Monte-Carlo simulation. Finally, the accuracy of confidence limits is discussed.