• Title/Summary/Keyword: Reliability design

Search Result 5,443, Processing Time 0.032 seconds

Flexural Reliability Assessment of PSC-I Girder Rail Bridge Under Operation (사용중 PSC-I 거더 철도 교량의 휨모멘트에 대한 신뢰도 분석)

  • Kim, Ki Hyun;Yeo, Inho;Sim, Hyoung-Bo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.187-194
    • /
    • 2016
  • It is necessary to determine reliability indexes of existing railway bridges prior to setting up a proper target reliability index that can be used to introduce a reliability based limit state design method to design practice. Reliability is evaluated for a six PSC-I girder railway bridge, which is one of many representative types of double-track railway bridges. The reliability assessment is carried out for an edge girder subjected to bending moment. In the assessment, the flexural resistance and the fixed-load effect were obtained using existing statistical values from previous research on the introduction of limit state design to road bridge design. On the other hand, the live-load effect was determined using statistical values obtained from field measurement for the Joong-ang corridor, on which heavy freight trains are frequently passing. The reliability assessment is performed by AFOSM(Advanced First Order Second Moment method) for the limit state equation, and a sensitivity analysis for the reliability is performed for each factor of the load and resistance effects.

Design for Reliability of Air-Launching Rocket, MirinaeII Using FMEA(Failure Modes and Effects Analysis) (FMEA를 통한 공중발사 로켓, 미리내II의 신뢰성 설계)

  • Kim, Jin-Ho;Bae, Bo-Young;Lee, Jae-Woo;Byun, Yung-Hwan;Kim, Kyung-Mee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1193-1200
    • /
    • 2008
  • The procedure of design for reliability which consists of reliability analysis and Failure Modes and Effects Analysis(FMEA) is established and reliability assesment is performed for the nano-satellite air-launching rocket, Mirinae II. By means of using the reliability analysis result, the feasibility to insert the Mirinae II to the target orbit for given mission time under operating environment is assessed. During the reliability analysis process, the system is categorized by Work Breakdown Structure(WBS), and reliability structure is defined by both Reliability Block Diagram(RBD) and schematics of the system. FMEA is used to determine the risk priority number of components and parts. The target reliability is satisfied by changing the design of components and parts with high-risk, hence the design for reliability to put the satellite in to the target orbit safely has been performed.

A Study on Reliability Based Design Criteria for Reinforced Concrete Columns (철근(鐵筋)콘크리트기둥의 신뢰성(信賴性) 설계규준(設計規準)에 관한 연구(研究))

  • Cho, Hyo Nam;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.25-33
    • /
    • 1983
  • This study is directed to propose a set of reliability based design provisions which gives more rational design for R.C. columns than the current WSD or USD standard design codes. Cornell's MFOSM theory is used for the derivation of the algorithm for the evaluation of uncertainties associated with resistances, whereas the magnitude of the uncertainties associated with load effects are chosen primarily by considering our level of practice. And thus the uncertainties so obtained are applied for the reliability analysis and the derivation of reliability based design criteria. A target reliability(${\beta}_0=4.0$) is selected as an appropriate value by comparing the values used in foreign countries and by analyzing the reliability levels of our current USD and WSD design standars. Then, a set of load and resistance factors corresponding to the target reliability is proposed as a reliability based design provision, and furthermoere a set of allowable stresses for reinforcing steel and concrete having same level of relibity with the corresponding LRFD criteria is also propared for the current WSD design provision. It may be concluded that the proposed LRFD reliability based design provisions and the corresponding allowable stresses give more rational design than the current code for R.C. columns and may be desirable to introdue into the current WSD and USD provision of R.C. column design.

  • PDF

Design and Research on High-Reliability HPEBB Used in Cascaded DSTATCOM

  • Yang, Kun;Wang, Yue;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.830-840
    • /
    • 2015
  • The H-bridge inverter is the fundamental power cell of the cascaded distribution static synchronous compensator (DSTATCOM). Thus, cell reliability is important to the compensation performance and stability of the overall system. The concept of the power electronics building block (PEBB) is an ideal solution for the power cell design. In this paper, an H-bridge inverter-based “plug and play” HPEBB is introduced into the main circuit and the controller to improve the compensation performance and reliability of the device. The section that discusses the main circuit primarily emphasizes the design of electrical parameters, physical structure, and thermal dissipation. The section that presents the controller part focuses on the principle of complex programmable logic device -based universal controller This section also analyzes typical reliability and anti-interference issues. The function and reliability of HPEBB are verified by experiments that are conducted on an HPEBB test-bed and on a 10 kV/± 10 Mvar DSTATCOM industrial prototype.

A Case Study of the Commom Cause Failure Analysis of Digital Reactor Protection System (디지털 원자로 보호시스템의 공통원인고장 분석에 관한 사례연구)

  • Kong, Myung-Bock;Lee, Sang-Yong
    • IE interfaces
    • /
    • v.25 no.4
    • /
    • pp.382-392
    • /
    • 2012
  • Reactor protection system to keep nuclear safety and operational economy of plants requires high reliability. Such a high reliability of the system can be achieved through the redundant design of components. However, common cause failures of components reduce the benefits of redundant design. Thus, the common cause failure analysis, to accurately calculate the reliability of the reactor protection system, is carried out using alpha-factor model. Analysis results to 24 operating months are that 1) the system reliability satisfies the reliability goal of EPRI-URD and 2) the common cause failure contributes 90% of the system unreliability. The uncertainty analysis using alpha factor parameters of 0.05 and 0.95 quantile values shows significantly large difference in the system unreliability.

Reliability of microwave towers against extreme winds

  • Deoliya, Rajesh;Datta, T.K.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.555-569
    • /
    • 1998
  • The reliability of antenna tower designed for a n-year design wind speed is determined by considering the variability of the strength of the component members and of the mean wind speed. For obtaining the n-year design wind speed, maximum annual wind speed is assumed to follow Gumbel Type-1 distribution. Following this distribution of the wind speed, the mean and standard deviation of stresses in each component member are worked out. The variability of the strength of members is defined by means of the nominal strength and a coefficient of variation. The probability of failure of the critical members of tower is determined by the first order second moment method (FOSM) of reliability analysis. Using the above method, the reliability against allowable stress failure of the critical members as well as the system reliabilities for a 75 m tall antenna tower, designed for n-year design wind speed, are presented.

Durability and Reliability Improvement for the Rubber Mount of Industrial Trucks (산업용차량 고무마운트 부품에 대한 내구성 및 신뢰성개선)

  • Jung, Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.3
    • /
    • pp.127-134
    • /
    • 2007
  • Predicting fatigue life of rubber components is an important issue in design procedure for industrial trucks to assure the durability and reliability. Main considerations in designing rubber components against fatigue failure are the compounding technology, shape design, and manufacturing process. Among them the rubber compounding technology is one of the most critical factor to determine more than 50% of component's quality. This paper presents how to improve the durability and reliability of industrial rubber mount during its design, development and prototype testing. The data presented illustrates explicitly the prediction of reliability growth in the product development cycle. The application of these techniques is a part of the product assurance function that plays an important role in rubber components reliability improvement.

A Reliability Optimization Problem of System with Mixed Redundancy Strategies (혼합 중복전략을 고려한 시스템 신뢰도 최적화 문제)

  • Kim, Heung-Seob;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.25 no.2
    • /
    • pp.153-162
    • /
    • 2012
  • The reliability is defined as a probability that a system will operate properly for a specified period of time under the design operating conditions without failure and it has been considered as one of the major design parameters in the field of industries. Reliability-Redundancy Optimization Problem(RROP) involves selec tion of components with multiple choices and redundancy levels for maximizing system reliability with constraints such as cost, weight, etc. However, in practice both active and cold standby redundancies may be used within a particular system design. Therefore, a redundancy strategy(active, cold standby) for each subsystem in order to maximize system reliability is considered in this study. Due to the nature of RROP, i.e. NP-hard problem, A Parallel Particle Swarm Optimization(PPSO) algorithm is proposed to solve the mathematical programming model and it gives consistently better quality solutions than existing studies for benchmark problems.

Modified Single Loop Single Vector Method for Stability and Efficiency Improvement in Reliability-Based Design Optimization (신뢰성기반 최적설계에서 수치적 안정성과 효율성의 개선을 위해 수정된 Single Loop Single Vector 방법)

  • Kim, Bong-Jae;Lee, Jae-Ohk;Yang, Young-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.51-59
    • /
    • 2005
  • SLSV (single loop single vector) method is to solve the excessive computational cost problem in RBDO (reliability-based design optimization) by decoupling the nested iteration loops. However, the practical use of SLSV method to RBDO case is limited by the instability or inaccuracy of the method since it often diverges or converges to a wrong solution. Thus, in this paper, a new modified SLSV method is proposed. This method improves its convergence capability effectively by utilizing Inactive Design and Active MPP Design together with modified HMV (hybrid mean value) method. The usefulness of the proposed method is also verified through numerical examples.

The Reliability-Based Probabilistic Structural Analysis for the Composite Tail Plane Structures (복합재 미익 구조의 신뢰성 기반 확률론적 구조해석)

  • Lee, Seok-Je;Kim, In-Gul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.93-100
    • /
    • 2012
  • In this paper, the deterministic optimal design for the tail plane made of composite materials is conducted under the deterministic loading condition and compared with that of the metallic materials. Next, the reliability analysis with five random variables such as loading and material properties of unidirectional prepreg is conducted to examine the probability of failure for the deterministic optimal design results. The MATLAB programing is used for reliability analysis combined with FEA S/W(COMSOL) for structural analysis. The laminated composite is assumed to the equivalent orthotropic material using classical laminated plate theory. The response surface methodology and importance sampling technique are adopted to reduce computational cost with satisfying the accuracy in reliability analysis. As a result, structural weight of composite materials is lighter than that of metals in deterministic optimal design. However, the probability of failure for the deterministic optimal design of the tail plane structures is too high to be neglected. The sensitivity of each variable is also estimated using probabilistic sensitivity analysis to figure out which variables are sensitive to failure. The computational cost is considerably reduced when response surface methodology and importance sampling technique are used. The study of the computationally inexpensive method for reliability-based design optimization will be necessary in further work.